Patents by Inventor Casey Kurth

Casey Kurth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250212476
    Abstract: An engineered substrate includes a polycrystalline ceramic core, a first adhesion layer coupled to the polycrystalline ceramic core, a conductive layer coupled to the first adhesion layer, a second adhesion layer coupled to the conductive layer, a diffusion barrier layer coupled to the second adhesion layer, and a bonding layer coupled to the diffusion barrier layer. The engineered substrate also includes a substantially single crystal layer coupled to the bonding layer. A first region of the engineered substrate includes an epitaxial III-V layer coupled to the substantially single crystal layer. A second region of the engineered substrate includes a eutectic barrier layer coupled to the bonding layer, a planarization layer coupled to the eutectic barrier layer, and an epitaxial III-V layer coupled to the planarization layer.
    Type: Application
    Filed: December 20, 2024
    Publication date: June 26, 2025
    Applicant: QROMIS, Inc.
    Inventors: Vladimir Odnoblyudov, Cem Basceri, Casey Kurth
  • Publication number: 20250212477
    Abstract: An engineered substrate includes a polycrystalline ceramic core having a device surface and a support surface opposite the device surface and a polycrystalline layer free of a binding agent coupled to the device surface. The polycrystalline grains can include aluminum nitride and the binding agent can include yttrium aluminum garnet. The polycrystalline layer can consist of aluminum nitride and be free of yttrium. An engineered substrate with a polycrystalline shell includes a polycrystalline ceramic core having a device surface, a support surface opposite the device surface, and peripheral surfaces extending between the device surface and the support surface. The engineered substrate with a polycrystalline shell also includes a polycrystalline shell free of a binding agent encapsulating the polycrystalline ceramic core.
    Type: Application
    Filed: December 23, 2024
    Publication date: June 26, 2025
    Applicant: QROMIS, Inc.
    Inventors: Vladimir Odnoblyudov, Cem Basceri, Casey Kurth
  • Publication number: 20250140774
    Abstract: Solid state lights (SSLs) including a back-to-back solid state emitters (SSEs) and associated methods are disclosed herein. In various embodiments, an SSL can include a carrier substrate having a first surface and a second surface different from the first surface. First and second through substrate interconnects (TSIs) can extend from the first surface of the carrier substrate to the second surface. The SSL can further include a first and a second SSE, each having a front side and a back side opposite the front side. The back side of the first SSE faces the first surface of the carrier substrate and the first SSE is electrically coupled to the first and second TSIs. The back side of the second SSE faces the second surface of the carrier substrate and the second SSE is electrically coupled to the first and second TSIs.
    Type: Application
    Filed: January 6, 2025
    Publication date: May 1, 2025
    Inventors: Cem Basceri, Casey Kurth, Kevin Tetz
  • Patent number: 12191298
    Abstract: Solid state lights (SSLs) including a back-to-back solid state emitters (SSEs) and associated methods are disclosed herein. In various embodiments, an SSL can include a carrier substrate having a first surface and a second surface different from the first surface. First and second through substrate interconnects (TSIs) can extend from the first surface of the carrier substrate to the second surface. The SSL can further include a first and a second SSE, each having a front side and a back side opposite the front side. The back side of the first SSE faces the first surface of the carrier substrate and the first SSE is electrically coupled to the first and second TSIs. The back side of the second SSE faces the second surface of the carrier substrate and the second SSE is electrically coupled to the first and second TSIs.
    Type: Grant
    Filed: June 23, 2023
    Date of Patent: January 7, 2025
    Assignee: Micron Technology, Inc.
    Inventors: Cem Basceri, Casey Kurth, Kevin Tetz
  • Publication number: 20230352470
    Abstract: Solid state lights (SSLs) including a back-to-back solid state emitters (SSEs) and associated methods are disclosed herein. In various embodiments, an SSL can include a carrier substrate having a first surface and a second surface different from the first surface. First and second through substrate interconnects (TSIs) can extend from the first surface of the carrier substrate to the second surface. The SSL can further include a first and a second SSE, each having a front side and a back side opposite the front side. The back side of the first SSE faces the first surface of the carrier substrate and the first SSE is electrically coupled to the first and second TSIs. The back side of the second SSE faces the second surface of the carrier substrate and the second SSE is electrically coupled to the first and second TSIs.
    Type: Application
    Filed: June 23, 2023
    Publication date: November 2, 2023
    Inventors: Cem Basceri, Casey Kurth, Kevin Tetz
  • Patent number: 11710732
    Abstract: Solid state lights (SSLs) including a back-to-back solid state emitters (SSEs) and associated methods are disclosed herein. In various embodiments, an SSL can include a carrier substrate having a first surface and a second surface different from the first surface. First and second through substrate interconnects (TSIs) can extend from the first surface of the carrier substrate to the second surface. The SSL can further include a first and a second SSE, each having a front side and a back side opposite the front side. The back side of the first SSE faces the first surface of the carrier substrate and the first SSE is electrically coupled to the first and second TSIs. The back side of the second SSE faces the second surface of the carrier substrate and the second SSE is electrically coupled to the first and second TSIs.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: July 25, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Cem Basceri, Casey Kurth, Kevin Tetz
  • Publication number: 20210288041
    Abstract: Solid state lights (SSLs) including a back-to-back solid state emitters (SSEs) and associated methods are disclosed herein. In various embodiments, an SSL can include a carrier substrate having a first surface and a second surface different from the first surface. First and second through substrate interconnects (TSIs) can extend from the first surface of the carrier substrate to the second surface. The SSL can further include a first and a second SSE, each having a front side and a back side opposite the front side. The back side of the first SSE faces the first surface of the carrier substrate and the first SSE is electrically coupled to the first and second TSIs. The back side of the second SSE faces the second surface of the carrier substrate and the second SSE is electrically coupled to the first and second TSIs.
    Type: Application
    Filed: May 25, 2021
    Publication date: September 16, 2021
    Inventors: Cem Basceri, Casey Kurth, Kevin Tetz
  • Patent number: 11037918
    Abstract: Solid state lights (SSLs) including a back-to-back solid state emitters (SSEs) and associated methods are disclosed herein. In various embodiments, an SSL can include a carrier substrate having a first surface and a second surface different from the first surface. First and second through substrate interconnects (TSIs) can extend from the first surface of the carrier substrate to the second surface. The SSL can further include a first and a second SSE, each having a front side and a back side opposite the front side. The back side of the first SSE faces the first surface of the carrier substrate and the first SSE is electrically coupled to the first and second TSIs. The back side of the second SSE faces the second surface of the carrier substrate and the second SSE is electrically coupled to the first and second TSIs.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: June 15, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Cem Basceri, Casey Kurth, Kevin Tetz
  • Patent number: 10431714
    Abstract: Engineered substrates for semiconductor devices are disclosed herein. A device in accordance with a particular embodiment includes a transducer structure having a plurality of semiconductor materials including a radiation-emitting active region. The device further includes an engineered substrate having a first material and a second material, at least one of the first material and the second material having a coefficient of thermal expansion at least approximately matched to a coefficient of thermal expansion of at least one of the plurality of semiconductor materials. At least one of the first material and the second material is positioned to receive radiation from the active region and modify a characteristic of the light.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: October 1, 2019
    Assignee: Qromis, Inc.
    Inventors: Martin F. Schubert, Cem Basceri, Vladimir Odnoblyudov, Casey Kurth, Thomas Gehrke
  • Publication number: 20180358344
    Abstract: Solid state lights (SSLs) including a back-to-back solid state emitters (SSEs) and associated methods are disclosed herein. In various embodiments, an SSL can include a carrier substrate having a first surface and a second surface different from the first surface. First and second through substrate interconnects (TSIs) can extend from the first surface of the carrier substrate to the second surface. The SSL can further include a first and a second SSE, each having a front side and a back side opposite the front side. The back side of the first SSE faces the first surface of the carrier substrate and the first SSE is electrically coupled to the first and second TSIs. The back side of the second SSE faces the second surface of the carrier substrate and the second SSE is electrically coupled to the first and second TSIs.
    Type: Application
    Filed: July 26, 2018
    Publication date: December 13, 2018
    Inventors: Cem Basceri, Casey Kurth, Kevin Tetz
  • Patent number: 10062677
    Abstract: Solid state lights (SSLs) including a back-to-back solid state emitters (SSEs) and associated methods are disclosed herein. In various embodiments, an SSL can include a carrier substrate having a first surface and a second surface different from the first surface. First and second through substrate interconnects (TSIs) can extend from the first surface of the carrier substrate to the second surface. The SSL can further include a first and a second SSE, each having a front side and a back side opposite the front side. The back side of the first SSE faces the first surface of the carrier substrate and the first SSE is electrically coupled to the first and second TSIs. The back side of the second SSE faces the second surface of the carrier substrate and the second SSE is electrically coupled to the first and second TSIs.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: August 28, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Cem Basceri, Casey Kurth, Kevin Tetz
  • Patent number: 9698329
    Abstract: Solid-state lighting devices (SSLDs) including a carrier substrate with conductors and methods of manufacturing SSLDs. The conductors can provide (a) improved thermal conductivity between a solid-state light emitter (SSLE) and a package substrate and (b) improved electrical conductivity for the SSLE. In one embodiment, the conductors have higher thermal and electrical conductivities than the carrier substrate supporting the SSLE.
    Type: Grant
    Filed: August 12, 2015
    Date of Patent: July 4, 2017
    Assignee: Quora Technology, Inc.
    Inventors: Scott D. Schellhammer, Scott E. Sills, Casey Kurth
  • Patent number: 9620670
    Abstract: Solid state lighting dies and associated methods of manufacturing are disclosed herein. In one embodiment, a solid state lighting die includes a substrate material, a first semiconductor material, a second semiconductor material, and an active region between the first and second semiconductor materials. The second semiconductor material has a surface facing away from the substrate material. The solid state lighting die also includes a plurality of openings extending from the surface of the second semiconductor material toward the substrate material.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: April 11, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Cem Basceri, Casey Kurth, Thomas Gehrke, Kevin Tetz
  • Publication number: 20160372451
    Abstract: Solid state lights (SSLs) including a back-to-back solid state emitters (SSEs) and associated methods are disclosed herein. In various embodiments, an SSL can include a carrier substrate having a first surface and a second surface different from the first surface. First and second through substrate interconnects (TSIs) can extend from the first surface of the carrier substrate to the second surface. The SSL can further include a first and a second SSE, each having a front side and a back side opposite the front side. The back side of the first SSE faces the first surface of the carrier substrate and the first SSE is electrically coupled to the first and second TSIs. The back side of the second SSE faces the second surface of the carrier substrate and the second SSE is electrically coupled to the first and second TSIs.
    Type: Application
    Filed: August 30, 2016
    Publication date: December 22, 2016
    Inventors: Cem Basceri, Casey Kurth, Kevin Tetz
  • Patent number: 9443834
    Abstract: Solid state lights (SSLs) including a back-to-back solid state emitters (SSEs) and associated methods are disclosed herein. In various embodiments, an SSL can include a carrier substrate having a first surface and a second surface different from the first surface. First and second through substrate interconnects (TSIs) can extend from the first surface of the carrier substrate to the second surface. The SSL can further include a first and a second SSE, each having a front side and a back side opposite the front side. The back side of the first SSE faces the first surface of the carrier substrate and the first SSE is electrically coupled to the first and second TSIs. The back side of the second SSE faces the second surface of the carrier substrate and the second SSE is electrically coupled to the first and second TSIs.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: September 13, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Cem Basceri, Casey Kurth, Kevin Tetz
  • Publication number: 20160155893
    Abstract: Engineered substrates for semiconductor devices are disclosed herein. A device in accordance with a particular embodiment includes a transducer structure having a plurality of semiconductor materials including a radiation-emitting active region. The device further includes an engineered substrate having a first material and a second material, at least one of the first material and the second material having a coefficient of thermal expansion at least approximately matched to a coefficient of thermal expansion of at least one of the plurality of semiconductor materials. At least one of the first material and the second material is positioned to receive radiation from the active region and modify a characteristic of the light.
    Type: Application
    Filed: February 5, 2016
    Publication date: June 2, 2016
    Inventors: Martin F. Schubert, Cem Basceri, Vladimir Odnoblyudov, Casey Kurth, Thomas Gehrke
  • Patent number: 9293678
    Abstract: Solid-state lighting devices (SSLDs) including a carrier substrate with conductors and methods of manufacturing SSLDs. The conductors can provide (a) improved thermal conductivity between a solid-state light emitter (SSLE) and a package substrate and (b) improved electrical conductivity for the SSLE. In one embodiment, the conductors have higher thermal and electrical conductivities than the carrier substrate supporting the SSLE.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: March 22, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Scott D. Schellhammer, Scott E. Sills, Casey Kurth
  • Publication number: 20160072016
    Abstract: Solid-state lighting devices (SSLDs) including a carrier substrate with conductors and methods of manufacturing SSLDs. The conductors can provide (a) improved thermal conductivity between a solid-state light emitter (SSLE) and a package substrate and (b) improved electrical conductivity for the SSLE. In one embodiment, the conductors have higher thermal and electrical conductivities than the carrier substrate supporting the SSLE.
    Type: Application
    Filed: August 12, 2015
    Publication date: March 10, 2016
    Inventors: Scott D. Schellhammer, Scott E. Sills, Casey Kurth
  • Patent number: 9269858
    Abstract: Engineered substrates for semiconductor devices are disclosed herein. A device in accordance with a particular embodiment includes a transducer structure having a plurality of semiconductor materials including a radiation-emitting active region. The device further includes an engineered substrate having a first material and a second material, at least one of the first material and the second material having a coefficient of thermal expansion at least approximately matched to a coefficient of thermal expansion of at least one of the plurality of semiconductor materials. At least one of the first material and the second material is positioned to receive radiation from the active region and modify a characteristic of the light.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: February 23, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Martin F. Schubert, Cem Basceri, Vladimir Odnoblyudov, Casey Kurth, Thomas Gehrke
  • Publication number: 20130049043
    Abstract: Engineered substrates for semiconductor devices are disclosed herein. A device in accordance with a particular embodiment includes a transducer structure having a plurality of semiconductor materials including a radiation-emitting active region. The device further includes an engineered substrate having a first material and a second material, at least one of the first material and the second material having a coefficient of thermal expansion at least approximately matched to a coefficient of thermal expansion of at least one of the plurality of semiconductor materials. At least one of the first material and the second material is positioned to receive radiation from the active region and modify a characteristic of the light.
    Type: Application
    Filed: August 31, 2011
    Publication date: February 28, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Martin F. Schubert, Cem Basceri, Vladimir Odnoblyudov, Casey Kurth, Thomas Gehrke