Patents by Inventor Casey McFarland

Casey McFarland has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10318705
    Abstract: The present application provides for various embodiments of methods for the analysis of high resolution melt (HRM) curve data; where statistical assay variations in melt curve data may result from system noise in an analysis system. Such system noise may arise from various sources, such as the thermal non-uniformity of a thermocycler block in a thermal cycler apparatus, a detection system, etc. Additionally, various methods for the analysis of HRM curve data may provide an identification of a sample without the need for a user inputted information.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: June 11, 2019
    Assignee: Life Technologies Corporation
    Inventors: Francis T. Cheng, Chengyong Yang, Casey McFarland, Ying Wang
  • Publication number: 20180327813
    Abstract: A method of detection of a target nucleic acid is provided. The method includes fractionating a sample into a plurality of sample volumes wherein more than 50% of the fractions contain no more than 1 target nucleic acid molecule per sample volumes, and subjecting the plurality of sample volumes to conditions for amplification. The method further includes detecting a change in ion concentration in a sample volume wherein a target nucleic acid is present, counting the number of fractions with an amplified target nucleic acid, and determining the quantity of target nucleic acid in the sample.
    Type: Application
    Filed: July 23, 2018
    Publication date: November 15, 2018
    Inventors: Caifu Chen, Casey McFarland, David Keys
  • Patent number: 10030262
    Abstract: A method of detection of a target nucleic acid is provided. The method includes fractionating a sample into a plurality of sample volumes wherein more than 50% of the fractions contain no more than 1 target nucleic acid molecule per sample volumes, and subjecting the plurality of sample volumes to conditions for amplification. The method further includes detecting a change in ion concentration in a sample volume wherein a target nucleic acid is present, counting the number of fractions with an amplified target nucleic acid, and determining the quantity of target nucleic acid in the sample.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: July 24, 2018
    Assignee: Life Technologies Corporation
    Inventors: Caifu Chen, Casey McFarland, David Keys
  • Publication number: 20160342734
    Abstract: The present application provides for various embodiments of methods for the analysis of high resolution melt (HRM) curve data; where statistical assay variations in melt curve data may result from system noise in an analysis system. Such system noise may arise from various sources, such as the thermal non-uniformity of a thermocycler block in a thermal cycler apparatus, a detection system, etc. Additionally, various methods for the analysis of HRM curve data may provide an identification of a sample without the need for a user inputted information.
    Type: Application
    Filed: May 19, 2016
    Publication date: November 24, 2016
    Inventors: Francis T. Cheng, Chengyong Yang, Casey McFarland, Ying Wang
  • Patent number: 9322055
    Abstract: Methods and systems for quantification of a target nucleic acid in a sample are provided. The method includes forming a plurality of discrete sample portions. Each of the plurality of discrete sample portions comprising a portion of the sample, and a reaction mixture. The method further includes amplifying the plurality of discrete sample portions to form a plurality of discrete processed sample portions. At least one discrete processed sample portion containing nucleic acid amplification reaction products. Fluorescence signals are detected from the at least one of the plurality of discrete processed sample portions to determine a presence of the at least one target nucleic acid. The method also includes determining the respective volumes of the plurality of the plurality of discrete processed sample portions, and estimating the number of copies-per-unit-volume of the at least one target nucleic acid in the sample.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: April 26, 2016
    Assignee: Life Technologies Corporation
    Inventors: Gordon A. Janaway, Mark Andersen, Kornelija Zgonc, Michael Pallas, Marcin Sikora, Casey McFarland, Ferrier N. Le, Haopeng Wang, Jian Gong, Gothami Padmabandu
  • Publication number: 20150099644
    Abstract: A method of detection of a target nucleic acid is provided. The method includes fractionating a sample into a plurality of sample volumes wherein more than 50% of the fractions contain no more than 1 target nucleic acid molecule per sample volumes, and subjecting the plurality of sample volumes to conditions for amplification. The method further includes detecting a change in ion concentration in a sample volume wherein a target nucleic acid is present, counting the number of fractions with an amplified target nucleic acid, and determining the quantity of target nucleic acid in the sample.
    Type: Application
    Filed: April 19, 2013
    Publication date: April 9, 2015
    Inventors: Caifu Chen, Casey McFarland, David Keys
  • Publication number: 20140248623
    Abstract: Methods and systems for quantification of a target nucleic acid in a sample are provided. The method includes forming a plurality of discrete sample portions. Each of the plurality of discrete sample portions comprising a portion of the sample, and a reaction mixture. The method further includes amplifying the plurality of discrete sample portions to form a plurality of discrete processed sample portions. At least one discrete processed sample portion containing nucleic acid amplification reaction products. Fluorescence signals are detected from the at least one of the plurality of discrete processed sample portions to determine a presence of the at least one target nucleic acid. The method also includes determining the respective volumes of the plurality of the plurality of discrete processed sample portions, and estimating the number of copies-per-unit-volume of the at least one target nucleic acid in the sample.
    Type: Application
    Filed: March 30, 2012
    Publication date: September 4, 2014
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Gordon A. Janaway, Mark Andersen, Kornelija Zgonc, Michael Pallas, Marcin Sikora, Casey McFarland, Ferrier N. Le, Haopeng Wang, Jian Gong, Gothami Padmabandu