Patents by Inventor Casper Skovby

Casper Skovby has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230084177
    Abstract: A wind turbine blade includes a profiled contour with a leading edge and a trailing edge, and a chord extending between the leading edge and the trailing edge, along with a blade shell with a pressure side and a suction side, a first main spar cap integrated in the pressure side of the blade shell, a second main spar cap integrated in the suction side of the blade shell, and one or more shear webs connected between the first main spar cap and the second main spar cap. The blade shell includes at least a first load carrying structure arranged at the leading edge or the trailing edge and having a first extension, including a first primary extension on a first side of the chord, where the first primary extension is at least 60% of the first extension.
    Type: Application
    Filed: May 27, 2022
    Publication date: March 16, 2023
    Applicant: LM WIND POWER US TECHNOLOGY APS
    Inventors: Morten RAVN, Peter HANSEN, Simon BERG BOJESEN, Casper SKOVBY, Mads DØSSING, Peter BÆK, Christian Frank ANDERSEN, Michael KLITGAARD, Mark Olaf SLOT
  • Patent number: 10662807
    Abstract: Method and blade monitoring system for monitoring bending moment of a wind turbine blade. The method comprises obtaining a first sensor set signal indicative of a first bending moment at a first sensor position different from the tip end along the longitudinal axis of the wind turbine blade, and estimating a bending moment at a first estimation position along the longitudinal axis based on the first sensor set signal, wherein the first sensor position is different from the first estimation position along the longitudinal axis. The blade monitoring system comprises a processing unit and an interface connected to the processing unit, the processing unit being configured for performing the method.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: May 26, 2020
    Assignee: LM WP PATENT HOLDING A/S
    Inventor: Casper Skovby
  • Publication number: 20190211801
    Abstract: A wind turbine blade and a method of manufacturing same are disclosed. The wind turbine blade comprises a profiled contour with leading and trailing edges and a chord extending there between, a blade shell with pressure and suction sides, a first main spar cap integrated in the pressure side, a second main spar cap integrated in the suction side, and one or more shear webs connected between the first main spar cap and the second main spar cap, wherein the blade shell comprises at least a first load carrying structure arranged at the leading edge or the trailing edge, wherein the first load carrying structure has a first extension including a first primary extension on a first side of the chord, wherein the first primary extension is at least 60% of the first extension.
    Type: Application
    Filed: June 23, 2017
    Publication date: July 11, 2019
    Applicant: LM Wind Power US Technology APS
    Inventors: Morten RAVN, Peter HANSEN, Simon BERG BOJESEN, Casper SKOVBY, Mads DØSSING, Peter BÆK, Christian Frank ANDERSEN, Michael KLITGAARD, Mark Olaf SLOT
  • Patent number: 10330082
    Abstract: A system for monitoring the deflection of a wind turbine blade is described. The system comprises a wireless range-measurement system, having at least one wireless communication device located towards the root end of the blade and at least one wireless communication device located towards the tip end of the blade. The root end device is provided on a bracket projecting from the external surface of the blade, to provide a communication path between the root end and tip end devices which is less susceptible to interference from multipath effects, etc. There is further provided a method to derive tilt and yaw moments from measured deflections. A control method for such a system is also described, wherein the signal gain of the communication path may be varied based at least in part upon the deflection characteristics of the wind turbine blade.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: June 25, 2019
    Assignee: LM WP PATENT HOLDING A/S
    Inventors: Claus Byskov, Peter Baek, Michael Klitgaard, Casper Skovby, Lars Fuglsang
  • Patent number: 10316817
    Abstract: A manufacturing method is described for a wind turbine blade, where layers of fiber material are laid up in a mold to form a portion of the blade structure. The fiber layers are infused with a resin which is subsequently cured to form the hardened blade structure. Some of the layers of fiber material are arranged so that a portion of the layers are kept resin-free during the infusion and curing steps, so that the fiber layer extends freely out from the external surface of the blade, preferably at the blade trailing edge, to provide a flexible blade trailing edge to reduce blade operational noise.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: June 11, 2019
    Assignee: LM WP PATENT HOLDING A/S
    Inventors: Michael Klitgaard, Christian Frank Andersen, Morten Ravn, Casper Skovby, Simon Berg Bojesen, Peter Baek
  • Patent number: 9909562
    Abstract: A control method for a wind turbine, in particular for a wind turbine blade is described. The control method makes use of the blade mode shapes, or natural vibration shapes, of the blade to detect the excitement level of the blade natural vibrations, and controls active lift devices on the blade in an effort to reduce the excitement levels, to reduce loading in the blade and the overall wind turbine structure. There is also provided a method of designing a wind turbine blade for use in such a method.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: March 6, 2018
    Assignee: LM WP PATENT HOLDING A/S
    Inventors: Peter Baek, Christian Frank Andersen, Mark Olaf Slot, Casper Skovby, Simon Berg Bojesen, Morten Ravn, Michael Klitgaard
  • Publication number: 20170226889
    Abstract: Method and blade monitoring system for monitoring bending moment of a wind turbine blade. The method comprises obtaining a first sensor set signal indicative of a first bending moment at a first sensor position different from the tip end along the longitudinal axis of the wind turbine blade, and estimating a bending moment at a first estimation position along the longitudinal axis based on the first sensor set signal, wherein the first sensor position is different from the first estimation position along the longitudinal axis. The blade monitoring system comprises a processing unit and an interface connected to the processing unit, the processing unit being configured for performing the method.
    Type: Application
    Filed: January 5, 2017
    Publication date: August 10, 2017
    Inventor: Casper SKOVBY
  • Publication number: 20170051718
    Abstract: A manufacturing method is described for a wind turbine blade, where layers of fibre material are laid up in a mould to form a portion of the blade structure. The fibre layers are infused with a resin which is subsequently cured to form the hardened blade structure. Some of the layers of fibre material are arranged so that a portion of the layers are kept resin-free during the infusion and curing steps, so that the fibre layer extends freely out from the external surface of the blade, preferably at the blade trailing edge, to provide a flexible blade trailing edge to reduce blade operational noise.
    Type: Application
    Filed: April 28, 2015
    Publication date: February 23, 2017
    Inventors: Michael KLITGAARD, Christian Frank ANDERSEN, Morten RAVN, Casper SKOVBY, Simon Berg BOJESEN, Peter BAEK
  • Patent number: 9574457
    Abstract: Method and blade monitoring system for monitoring bending moment of a wind turbine blade. The method comprises obtaining a first sensor set signal indicative of a first bending moment at a first sensor position different from the tip end along the longitudinal axis of the wind turbine blade, and estimating a bending moment at a first estimation position along the longitudinal axis based on the first sensor set signal, wherein the first sensor position is different from the first estimation position along the longitudinal axis. The blade monitoring system comprises a processing unit and an interface connected to the processing unit, the processing unit being configured for performing the method.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: February 21, 2017
    Assignee: LM WP PATENT HOLDINGS A/S
    Inventor: Casper Skovby
  • Publication number: 20150240787
    Abstract: A system for monitoring the deflection of a wind turbine blade is described. The system comprises a wireless range-measurement system, having at least one wireless communication device located towards the root end of the blade and at least one wireless communication device located towards the tip end of the blade. The root end device is provided on a bracket projecting from the external surface of the blade, to provide a communication path between the root end and tip end devices which is less susceptible to interference from multipath effects, etc. There is further provided a method to derive tilt and yaw moments from measured deflections. A control method for such a system is also described, wherein the signal gain of the communication path may be varied based at least in part upon the deflection characteristics of the wind turbine blade.
    Type: Application
    Filed: August 14, 2013
    Publication date: August 27, 2015
    Inventors: Claus Byskov, Peter Baek, Michael Klitgaard, Casper Skovby, Lars Fuglsang
  • Publication number: 20140334928
    Abstract: A control method for a wind turbine, in particular for a wind turbine blade is described. The control method makes use of the blade mode shapes, or natural vibration shapes, of the blade to detect the excitement level of the blade natural vibrations, and controls active lift devices on the blade in an effort to reduce the excitement levels, to reduce loading in the blade and the overall wind turbine structure. There is also provided a method of designing a wind turbine blade for use in such a method.
    Type: Application
    Filed: December 5, 2012
    Publication date: November 13, 2014
    Inventors: Peter Baek, Christian Frank Andersen, Mark Olaf Slot, Casper Skovby, Simon Berg Bojesen, Morten Ravn, Michael Klitgaard
  • Publication number: 20130243594
    Abstract: Method and blade monitoring system for monitoring bending moment of a wind turbine blade. The method comprises obtaining a first sensor set signal indicative of a first bending moment at a first sensor position different from the tip end along the longitudinal axis of the wind turbine blade, and estimating a bending moment at a first estimation position along the longitudinal axis based on the first sensor set signal, wherein the first sensor position is different from the first estimation position along the longitudinal axis. The blade monitoring system comprises a processing unit and an interface connected to the processing unit, the processing unit being configured for performing the method.
    Type: Application
    Filed: December 19, 2011
    Publication date: September 19, 2013
    Applicant: LM WP Patent Holdings A/S
    Inventor: Casper Skovby