Patents by Inventor Cass Khoo
Cass Khoo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Method, apparatus and software for monitoring and improving the efficiency of a heat exchange system
Patent number: 12104834Abstract: A method of improving the efficiency of the heat exchange system using variable superheat and sub cooling values for a wide range of ambient conditions is provided. The heat exchange system comprises an efficiency enhancing apparatus positioned between the condenser and evaporator. Data analytics software module and artificial intelligence techniques are used to obtain optimum system parameters for achieving maximum efficiency.Type: GrantFiled: January 23, 2022Date of Patent: October 1, 2024Inventor: Cass Khoo -
Method, Apparatus and Software for monitoring and improving the efficiency of a heat exchange system
Publication number: 20220252316Abstract: A method of improving the efficiency of the heat exchange system using variable superheat and sub cooling values for a wide range of ambient conditions is provided. The heat exchange system comprises an efficiency enhancing apparatus positioned between the condenser and evaporator. Data analytics software module and artificial intelligence techniques are used to obtain optimum system parameters for achieving maximum efficiency.Type: ApplicationFiled: January 23, 2022Publication date: August 11, 2022Inventor: Cass Khoo -
Patent number: 11022352Abstract: A method and apparatus for improving refrigeration and air conditioning efficiency for use with a heat exchange system having a compressor, condenser, evaporator, expansion valve, and circulating refrigerant. The apparatus includes a liquid refrigerant containing vessel having a refrigerant entrance and a refrigerant exit with the vessel positioned in the heat exchange system between the condenser and the evaporator, and means for creating a turbulent flow of liquefied refrigerant. The apparatus further preferably includes a refrigerant bypass path to sub-cool a portion of the refrigerant within the vessel; a disk positioned at the liquid refrigerant entrance to develop a low pressure area on the back side and create a turbulent flow of refrigerant entering the vessel; and a refrigerant valve incorporated into the refrigerant path downstream of the expansion valve and before the coil which develops a vortex that continues through the refrigerant coil.Type: GrantFiled: October 12, 2015Date of Patent: June 1, 2021Inventor: Cass Khoo
-
Patent number: 10060660Abstract: A method and apparatus to improve the efficiency of a heat exchange system comprising a compressor, condenser, expansion valve, an evaporator and an expansion valve are provided. The apparatus is positioned between the expansion valve and the evaporator and comprises an atomizing disc, an outer connector pipe and two inner pipes inside the connector pipe in contact with the disc. The disc is provided with vertical blades that are angled to provide the turbulence necessary to create a low pressure at the back of the disc. The low pressure thus created vaporizes the partially vaporized incoming refrigerant from the expansion valve and thereby improves the efficiency of the refrigeration system.Type: GrantFiled: July 20, 2015Date of Patent: August 28, 2018Inventor: Cass Khoo
-
Patent number: 9857110Abstract: A method and apparatus for use with a heat exchange system having a compressor, condenser, evaporator, an expansion device, and circulating refrigerant is provided. The apparatus comprises a chamber positioned between the condenser and the evaporator. According to an embodiment of the invention, the chamber comprises a down tube with holes for the passage of refrigerant from the chamber and a top inlet port comprising a vapor expansion screen. The suction of the refrigerant through the holes draws refrigerant towards the top inlet port past the vapor expansion screen, allowing for further cooling within the chamber. When the refrigerant eventually exits the chamber, it is considerably cooler than when it entered the vessel, making the entire refrigeration system more efficient.Type: GrantFiled: March 17, 2015Date of Patent: January 2, 2018Inventor: Cass Khoo
-
Patent number: 9810453Abstract: In one aspect of the invention, an apparatus for improving the efficiency of a heat exchange system having a compressor, condenser, expansion valve, evaporator and a flowing refrigerant is provided. The apparatus is a tubular device having a refrigerant entrance and a refrigerant exit and is positioned in the heat exchange system between the expansion valve and the evaporator. The device further comprises a means for removing heat from the refrigerant. According to an embodiment of the invention, the heat removal means is a cylindrical screen coated with diamonds.Type: GrantFiled: July 20, 2015Date of Patent: November 7, 2017Inventor: Cass Khoo
-
Patent number: 9702599Abstract: A method and apparatus for improving refrigeration and air conditioning efficiency for use with a heat exchange system having a compressor, condenser, evaporator, expansion device, and circulating refrigerant. The apparatus includes is a liquid refrigerant containing vessel having a refrigerant entrance and a refrigerant exit with the vessel positioned in the heat exchange system between the condenser and the evaporator, and means for creating a turbulent flow of liquefied refrigerant. The apparatus further preferably includes a refrigerant bypass path to sub-cool a portion of the refrigerant within the vessel; a disk positioned at the liquid refrigerant entrance to develop a low pressure area on the back side and create a turbulent flow of refrigerant entering the vessel; and a refrigerant valve incorporated into the refrigerant path downstream of the expansion valve and before the coil which develops a vortex that continues through the refrigerant coil.Type: GrantFiled: September 29, 2014Date of Patent: July 11, 2017Inventors: Gary E Phillippe, Cass Khoo
-
Patent number: 9702600Abstract: A method and apparatus for improving refrigeration and air conditioning efficiency for use with a heat exchange system having a compressor, condenser, evaporator, expansion device, and circulating refrigerant. The apparatus includes is a liquid refrigerant containing vessel having a refrigerant entrance and a refrigerant exit with the vessel positioned in the heat exchange system between the condenser and the evaporator, and means for creating a turbulent flow of liquefied refrigerant. The apparatus further preferably includes a refrigerant bypass path to sub-cool a portion of the refrigerant within the vessel; a disk positioned at the liquid refrigerant entrance to develop a, low pressure area on the back side and create a turbulent flow of refrigerant entering the vessel; and a refrigerant valve incorporated into the refrigerant path downstream of the expansion valve and before the coil which develops a vortex that continues through the refrigerant coil.Type: GrantFiled: September 29, 2014Date of Patent: July 11, 2017Inventors: Gary E. Phillippe, Cass Khoo
-
Patent number: 9702602Abstract: A method and apparatus for improving refrigeration and air conditioning efficiency for use with a heat exchange system having a compressor, condenser, evaporator, expansion device, and circulating refrigerant. The apparatus includes is a liquid refrigerant containing vessel having a refrigerant entrance and a refrigerant exit with the vessel positioned in the heat exchange system between the condenser and the evaporator, and means for creating a turbulent flow of liquefied refrigerant. The apparatus further preferably includes a refrigerant bypass path to sub-cool a portion of the refrigerant within the vessel; a disk positioned at the liquid refrigerant entrance to develop a low pressure area on the back side and create a turbulent flow of refrigerant entering the vessel; and a refrigerant valve incorporated into the refrigerant path downstream of the expansion valve and before the coil which develops a vortex that continues through the refrigerant coil.Type: GrantFiled: September 29, 2014Date of Patent: July 11, 2017Inventors: Gary E Phillippe, Cass Khoo
-
Patent number: 9494351Abstract: A method and apparatus for improving refrigeration and air conditioning efficiency for use with a heat exchange system having a compressor, condenser, evaporator, expansion device, and circulating refrigerant. The apparatus includes is a liquid refrigerant containing vessel having a refrigerant entrance and a refrigerant exit with the vessel positioned in the heat exchange system between the condenser and the evaporator, and means for creating a turbulent flow of liquefied refrigerant. The apparatus further preferably includes a refrigerant bypass path to sub-cool a portion of the refrigerant within the vessel; a disk positioned at the liquid refrigerant entrance to develop a low pressure area on the back side and create a turbulent flow of refrigerant entering the vessel; and a refrigerant valve incorporated into the refrigerant path downstream of the expansion valve and before the coil which develops a vortex that continues through the refrigerant coil.Type: GrantFiled: April 23, 2010Date of Patent: November 15, 2016Inventors: Gary E. Phillippe, Cass Khoo
-
Publication number: 20160234919Abstract: An energy saving HID lamp with a long lifespan is provided. In an embodiment of the invention, the lamp comprises at least two arc tubes within a quartz enclosure wherein each of the arc tubes has a tungsten cathode tip, an anode and xenon gas between the two electrodes. Only one arc tube is illuminated each time the power is switched on. A control system connected to the ballast circuitry provides dimming up to 50% of the total power of the lamp. Further a motion sensor and a preset timer positioned within the control system provide added energy savings and make the lamp highly suitable for street lighting, public parking and such purposes. The igniter is positioned at the base of the lamp so that the ballast can be located at a convenient location for easy servicing and handling.Type: ApplicationFiled: February 2, 2016Publication date: August 11, 2016Applicant: Articmaster Inc.Inventor: Cass Khoo
-
Publication number: 20160195309Abstract: A method and apparatus to improve the efficiency of a heat exchange system comprising a compressor, condenser, expansion valve, an evaporator and an expansion valve are provided. The apparatus is positioned between the expansion valve and the evaporator and comprises an atomizing disc, an outer connector pipe and two inner pipes inside the connector pipe in contact with the disc. The disc is provided with vertical blades that are angled to provide the turbulence necessary to create a low pressure at the back of the disc. The low pressure thus created vaporizes the partially vaporized incoming refrigerant from the expansion valve and thereby improves the efficiency of the refrigeration system.Type: ApplicationFiled: July 20, 2015Publication date: July 7, 2016Inventor: Cass Khoo
-
Publication number: 20160195310Abstract: In one aspect of the invention, an apparatus for improving the efficiency of a heat exchange system having a compressor, condenser, expansion valve, evaporator and a flowing refrigerant is provided. The apparatus is a tubular device having a refrigerant entrance and a refrigerant exit and is positioned in the heat exchange system between the expansion valve and the evaporator. The device further comprises a means for removing heat from the refrigerant. According to an embodiment of the invention, the heat removal means is a cylindrical screen coated with diamonds.Type: ApplicationFiled: July 20, 2015Publication date: July 7, 2016Inventor: Cass Khoo
-
Publication number: 20160178242Abstract: A method and apparatus for use with a heat exchange system having a compressor, condenser, evaporator, an expansion device, and circulating refrigerant is provided. The apparatus comprises a chamber positioned between the condenser and the evaporator. According to an embodiment of the invention, the chamber comprises a down tube with holes for the passage of refrigerant from the chamber and a top inlet port comprising a vapor expansion screen. The suction of the refrigerant through the holes draws refrigerant towards the top inlet port past the vapor expansion screen, allowing for further cooling within the chamber. When the refrigerant eventually exits the chamber, it is considerably cooler than when it entered the vessel, making the entire refrigeration system more efficient.Type: ApplicationFiled: March 17, 2015Publication date: June 23, 2016Inventor: Cass Khoo
-
Publication number: 20160102896Abstract: A method and apparatus for improving refrigeration and air conditioning efficiency for use with a heat exchange system having a compressor, condenser, evaporator, expansion valve, and circulating refrigerant. The apparatus includes a liquid refrigerant containing vessel having a refrigerant entrance and a refrigerant exit with the vessel positioned in the heat exchange system between the condenser and the evaporator, and means for creating a turbulent flow of liquefied refrigerant. The apparatus further preferably includes a refrigerant bypass path to sub-cool a portion of the refrigerant within the vessel; a disk positioned at the liquid refrigerant entrance to develop a low pressure area on the back side and create a turbulent flow of refrigerant entering the vessel; and a refrigerant valve incorporated into the refrigerant path downstream of the expansion valve and before the coil which develops a vortex that continues through the refrigerant coil.Type: ApplicationFiled: October 12, 2015Publication date: April 14, 2016Applicant: Articmaster Inc.Inventor: Cass Khoo
-
Publication number: 20160091230Abstract: A method and apparatus for improving refrigeration and air conditioning efficiency for use with a heat exchange system having a compressor, condenser, evaporator, expansion device, and circulating refrigerant. The apparatus includes is a liquid refrigerant containing vessel having a refrigerant entrance and a refrigerant exit with the vessel positioned in the heat exchange system between the condenser and the evaporator, and means for creating a turbulent flow of liquefied refrigerant. The apparatus further preferably includes a refrigerant bypass path to sub-cool a portion of the refrigerant within the vessel; a disk positioned at the liquid refrigerant entrance to develop a, low pressure area on the back side and create a turbulent flow of refrigerant entering the vessel; and a refrigerant valve incorporated into the refrigerant path downstream of the expansion valve and before the coil which develops a vortex that continues through the refrigerant coil.Type: ApplicationFiled: September 29, 2014Publication date: March 31, 2016Inventors: Gary E. Phillippe, Cass Khoo
-
Publication number: 20150135766Abstract: A method and apparatus for improving refrigeration and air conditioning efficiency for use with a heat exchange system having a compressor, condenser, evaporator, expansion device, and circulating refrigerant. The apparatus includes is a liquid refrigerant containing vessel having a refrigerant entrance and a refrigerant exit with the vessel positioned in the heat exchange system between the condenser and the evaporator, and means for creating a turbulent flow of liquefied refrigerant. The apparatus further preferably includes a refrigerant bypass path to sub-cool a portion of the refrigerant within the vessel; a disk positioned at the liquid refrigerant entrance to develop a low pressure area on the back side and create a turbulent flow of refrigerant entering the vessel; and a refrigerant valve incorporated into the refrigerant path downstream of the expansion valve and before the coil which develops a vortex that continues through the refrigerant coil.Type: ApplicationFiled: April 23, 2010Publication date: May 21, 2015Inventors: Gary E Phillippe, Cass Khoo
-
Publication number: 20150082819Abstract: A method and apparatus for improving refrigeration and air conditioning efficiency for use with a heat exchange system having a compressor, condenser, evaporator, expansion device, and circulating refrigerant. The apparatus includes is a liquid refrigerant containing vessel having a refrigerant entrance and a refrigerant exit with the vessel positioned in the heat exchange system between the condenser and the evaporator, and means for creating a turbulent flow of liquefied refrigerant. The apparatus further preferably includes a refrigerant bypass path to sub-cool a portion of the refrigerant within the vessel; a disk positioned at the liquid refrigerant entrance to develop a low pressure area on the back side and create a turbulent flow of refrigerant entering the vessel; and a refrigerant valve incorporated into the refrigerant path downstream of the expansion valve and before the coil which develops a vortex that continues through the refrigerant coil.Type: ApplicationFiled: September 29, 2014Publication date: March 26, 2015Inventors: Gary E Phillippe, Cass Khoo
-
Publication number: 20150040610Abstract: A method and apparatus for improving refrigeration and air conditioning efficiency for use with a heat exchange system having a compressor, condenser, evaporator, expansion device, and circulating refrigerant. The apparatus includes is a liquid refrigerant containing vessel having a refrigerant entrance and a refrigerant exit with the vessel positioned in the heat exchange system between the condenser and the evaporator, and means for creating a turbulent flow of liquefied refrigerant. The apparatus further preferably includes a refrigerant bypass path to sub-cool a portion of the refrigerant within the vessel; a disk positioned at the liquid refrigerant entrance to develop a low pressure area on the back side and create a turbulent flow of refrigerant entering the vessel; and a refrigerant valve incorporated into the refrigerant path downstream of the expansion valve and before the coil which develops a vortex that continues through the refrigerant coil.Type: ApplicationFiled: September 29, 2014Publication date: February 12, 2015Inventors: Gary E. Phillippe, Cass Khoo