Patents by Inventor Cassandra Ann Piippo Svendsen

Cassandra Ann Piippo Svendsen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130018399
    Abstract: An atherectomy device is disclosed, which is rotationally driven by an electric motor. In some designs, the device includes features unavailable on gas turbine-driven systems, such as the storing in memory of low/medium/high preset rotation speeds for particular models of handle, calculations of the amount of saline left in the IV and associated warnings when it gets sufficiently low, and automatic adjustment of the IV pump rate to a predetermined or calculated level when the rotational speed of the motor is changed. The electric motor has far more rotational inertia than a comparable gas turbine, so the system includes a control mechanism that helps prevent damage from excessive torque being applied to the distal end of the drive shaft. When an obstruction at the distal end is detected, by a drop in the motor rotational speed, the motor is released and is allowed to spin freely as a flywheel.
    Type: Application
    Filed: September 21, 2012
    Publication date: January 17, 2013
    Applicant: CARDIOVASCULAR SYSTEMS, INC.
    Inventors: Jody Lee Rivers, Charles A. Plowe, Cassandra Ann Piippo Svendsen, Walter John Dobrovolny, Michael John Eng, Scott M. Hanson
  • Publication number: 20130018398
    Abstract: An atherectomy device is disclosed, which is rotationally driven by an electric motor. In some designs, the device includes features unavailable on gas turbine-driven systems, such as the storing in memory of low/medium/high preset rotation speeds for particular models of handle, calculations of the amount of saline left in the IV and associated warnings when it gets sufficiently low, and automatic adjustment of the IV pump rate to a predetermined or calculated level when the rotational speed of the motor is changed. The electric motor has far more rotational inertia than a comparable gas turbine, so the system includes a control mechanism that helps prevent damage from excessive torque being applied to the distal end of the drive shaft. When an obstruction at the distal end is detected, by a drop in the motor rotational speed, the motor is released and is allowed to spin freely as a flywheel.
    Type: Application
    Filed: September 21, 2012
    Publication date: January 17, 2013
    Applicant: CARDIOVASCULAR SYSTEMS, INC.
    Inventors: Jody Lee Rivers, Charles A. Plowe, Cassandra Ann Piippo Svendsen, Walter John Dobrovolny, Michael John Eng, Scott M. Hanson
  • Publication number: 20120041359
    Abstract: The invention provides systems and methods for mixing of therapeutic agents before and/or during the localized application of the therapeutic agents. Most preferably, the present invention provides systems and methods for mixing of therapeutic agents before and/or during administration of the agents within a biological lumen. Various embodiments of the present invention comprise systems and methods for inducing a mixing state in the therapeutic agents, thereby inducing and/or maintaining homogeneity of the agents before and/or during localized delivery.
    Type: Application
    Filed: February 17, 2011
    Publication date: February 16, 2012
    Applicant: CARDIOVASCULAR SYSTEMS, INC.
    Inventors: Victor Leo Schoenle, Cassandra Ann Piippo Svendsen, Kristina Tibesar Jensen, Mark B. Oreschnick, Alyson M. Borrell
  • Publication number: 20120035588
    Abstract: The invention relates generally to devices and methods for local delivery of therapeutic agents to the wall of a bodily lumen with minimal shearing damage to the therapeutic agents, more specifically to the wall of a blood vessel following atherectomy. A preferred delivery mechanism comprises a balloon, or double balloon, though any distal catheter design may be used to reduce shear stress and to conserve and/or isolate the therapeutic substance.
    Type: Application
    Filed: February 14, 2011
    Publication date: February 9, 2012
    Applicant: CARDIOVASCULAR SYSTEMS, INC.
    Inventors: Victor Leo Schoenle, Ryan D. Welty, Kristina Tibesar Jensen, Cassandra Ann Piippo Svendsen, Jeffrey A. McBroom
  • Publication number: 20110213391
    Abstract: An atherectomy device is disclosed, which is rotationally driven by an electric motor. In some designs, the device includes features unavailable on gas turbine-driven systems, such as the storing in memory of low/medium/high preset rotation speeds for particular models of handle, calculations of the amount of saline left in the IV and associated warnings when it gets sufficiently low, and automatic adjustment of the IV pump rate to a predetermined or calculated level when the rotational speed of the motor is changed. The electric motor has far more rotational inertia than a comparable gas turbine, so the system includes a control mechanism that helps prevent damage from excessive torque being applied to the distal end of the drive shaft. When an obstruction at the distal end is detected, by a drop in the motor rotational speed, the motor is released and is allowed to spin freely as a flywheel.
    Type: Application
    Filed: February 26, 2010
    Publication date: September 1, 2011
    Applicant: CARDIOVASCULAR SYSTEMS, INC.
    Inventors: Jody Lee Rivers, Charles A. Plowe, Cassandra Ann Piippo Svendsen, Walter John Dobrovolny, Michael John Eng, Scott M. Hanson