Patents by Inventor CASTRO LAICER

CASTRO LAICER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10128496
    Abstract: A three-dimensional, porous anode material suitable for use in a lithium-ion cell. The three-dimensional, porous anode material includes active anode particles embedded within a carbon matrix. The porous structure of this novel anode material allows for the expansion and contraction of the anode without the anode delaminating or breaking apart, thus improving the life-cycle of the lithium-ion cell. An example of this three-dimensional porous anode material is a porous silicon-carbon composite formed using a bi-continuous micro-emulsion (BME) template.
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: November 13, 2018
    Assignee: GINER, INC.
    Inventors: Castro Laicer, Brian Rasimick, Kate Harrison, Robert McDonald
  • Publication number: 20170263908
    Abstract: An electrochemical cell, such as a capacitor or a secondary battery, is formed with a heat-resistant separator comprising a crosslinked membrane. The heat resistant separator is formed by exposing a polymeric membrane to a suitable condition, such as electron beam irradiation, to form the cross linked separator. In certain embodiments, the heat-resistant separator can be in the form of a laminate. In other embodiments, the heat-resistant separator includes inorganic particulate additives. The separator improves both safety and electrochemical performance of electrochemical cells, including lithium-ion batteries, such as by protecting against off-normal thermal abuse conditions and internal shorts from dendrite formation. The heat-resistant separator also provides improvements in high-rate and power density performance capabilities of secondary batteries.
    Type: Application
    Filed: March 8, 2017
    Publication date: September 14, 2017
    Inventors: Castro Laicer, Mario Moreira, Katherine Harrison
  • Patent number: 9728802
    Abstract: In polymer electrolyte membrane (PEM) fuel cells and electrolyzes, attaining and maintaining high membrane conductivity and durability is crucial for performance and efficiency. The use of low equivalent weight (EW) perfluorinated ionomers is one of the few options available to improve membrane conductivity. However, excessive dimensional changes of low EW ionomers upon application of wet/dry or freeze/thaw cycles yield catastrophic losses in membrane integrity. Incorporation of ionomers within porous, dimensionally-stable perforated polymer electrolyte membrane substrates provides improved PEM performance and longevity. The present invention provides novel methods using micromolds to fabricate the perforated polymer electrolyte membrane substrates. These novel methods using micromolds create uniform and well-defined pore structures. In addition, these novel methods using micromolds described herein may be used in batch or continuous processing.
    Type: Grant
    Filed: May 14, 2014
    Date of Patent: August 8, 2017
    Assignee: GINER, INC.
    Inventors: Cortney Mittelsteadt, Avni Argun, Castro Laicer, Jason Willey
  • Publication number: 20160049656
    Abstract: A three-dimensional, porous anode material suitable for use in a lithium-ion cell. The three-dimensional, porous anode material includes active anode particles embedded within a carbon matrix. The porous structure of this novel anode material allows for the expansion and contraction of the anode without the anode delaminating or breaking apart, thus improving the life-cycle of the lithium-ion cell. An example of this three-dimensional porous anode material is a porous silicon-carbon composite formed using a bi-continuous micro-emulsion (BME) template.
    Type: Application
    Filed: August 14, 2015
    Publication date: February 18, 2016
    Inventors: Castro Laicer, Brian Rasimick, Kate Harrison, Robert McDonald
  • Publication number: 20140342271
    Abstract: In polymer electrolyte membrane (PEM) fuel cells and electrolyzes, attaining and maintaining high membrane conductivity and durability is crucial for performance and efficiency. The use of low equivalent weight (EW) perfluorinated ionomers is one of the few options available to improve membrane conductivity. However, excessive dimensional changes of low EW ionomers upon application of wet/dry or freeze/thaw cycles yield catastrophic losses in membrane integrity. Incorporation of ionomers within porous, dimensionally-stable perforated polymer electrolyte membrane substrates provides improved PEM performance and longevity. The present invention provides novel methods using micromolds to fabricate the perforated polymer electrolyte membrane substrates. These novel methods using micromolds create uniform and well-defined pore structures. In addition, these novel methods using micromolds described herein may be used in batch or continuous processing.
    Type: Application
    Filed: May 14, 2014
    Publication date: November 20, 2014
    Inventors: CORTNEY MITTELSTEADT, AVNI ARGUN, CASTRO LAICER, JASON WILLEY