Patents by Inventor Cathal Clancy

Cathal Clancy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11473594
    Abstract: A compressor has a rotor assembly having an impeller for generating an airflow through the compressor, a stator core assembly for causing rotation of the impeller, and a diffuser assembly for acting on the airflow generated by the impeller. The diffuser assembly has a first diffuser stage and a second diffuser stage. The first and second diffuser stages are separate components connected to one another by a fastener.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: October 18, 2022
    Assignee: Dyson Technology Limited
    Inventors: Mark Andrew Johnson, Simon Alexander Locke, Matthew John Childe, Cathal Clancy, Vadivel Kumaran Sivashanmugam, Nora Er-Rouhly, Lukasz Andrzej Kowalczyk, Alan Glynn Sanderson, Thomas Richard Stafford, Sarah Elizabeth Elson, Alexander Thomas Wells, Jim Ray Lluisma
  • Publication number: 20210207617
    Abstract: A compressor has a rotor assembly having an impeller for generating an airflow through the compressor, a stator core assembly for causing rotation of the impeller, and a diffuser assembly for acting on the airflow generated by the impeller. The diffuser assembly has a first diffuser stage and a second diffuser stage. The first and second diffuser stages are separate components connected to one another by a fastener.
    Type: Application
    Filed: March 12, 2019
    Publication date: July 8, 2021
    Applicant: Dyson Technology Limited
    Inventors: Mark Andrew JOHNSON, Simon Alexander LOCKE, Matthew John CHILDE, Cathal CLANCY, Vadivel Kumaran SIVASHANMUGAM, Nora ER-ROUHLY, Lukasz Andrzej KOWALCZYK, Alan Glynn SANDERSON, Thomas Richard STAFFORD, Sarah Elizabeth ELSON, Alexander Thomas WELLS, Jim Ray LLUISMA
  • Patent number: 10125687
    Abstract: A turbine engine assembly includes a core compressor configured to discharge a first airflow at a first temperature and a first pressure. The turbine engine assembly also includes a cooling system turbine configured to receive the first airflow at the first temperature and the first pressure and discharge a second airflow at a second pressure less than the first pressure. The turbine engine assembly further includes a heat exchanger configured to receive the second airflow and discharge a third airflow at a second temperature less than the first temperature. The turbine engine assembly also includes a cooling system compressor rotatably coupled to the cooling system turbine. The cooling system compressor is configured to receive the third airflow and discharge a fourth airflow at a third pressure greater than the first pressure.
    Type: Grant
    Filed: February 29, 2016
    Date of Patent: November 13, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Florian Stefan Hoefler, Cathal Clancy, Andrew Maxwell Peter
  • Publication number: 20170248079
    Abstract: A turbine engine assembly includes a core compressor configured to discharge a first airflow at a first temperature and a first pressure. The turbine engine assembly also includes a cooling system turbine configured to receive the first airflow at the first temperature and the first pressure and discharge a second airflow at a second pressure less than the first pressure. The turbine engine assembly further includes a heat exchanger configured to receive the second airflow and discharge a third airflow at a second temperature less than the first temperature. The turbine engine assembly also includes a cooling system compressor rotatably coupled to the cooling system turbine. The cooling system compressor is configured to receive the third airflow and discharge a fourth airflow at a third pressure greater than the first pressure.
    Type: Application
    Filed: February 29, 2016
    Publication date: August 31, 2017
    Inventors: Florian Stefan Hoefler, Cathal Clancy, Andrew Maxwell Peter
  • Patent number: 9500122
    Abstract: The method includes moving at least one of a first support and a second support to vary a position of the plurality of main blades and tandem blades relative to each other to control one or more flow control characteristics across the turbine. The turbine includes a nozzle having the plurality of main blades and tandem blades. The plurality of main blades are coupled to the first support and the plurality of tandem blades are coupled to the second support disposed spaced apart from the first support.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: November 22, 2016
    Assignee: General Electric Company
    Inventors: Cathal Clancy, Daniel Edward Loringer, Rodrigo Rodriguez Erdmenger, Vittorio Michelassi
  • Patent number: 8925317
    Abstract: An exemplary turbocharger system for an internal combustion engine is provided. The turbocharger system includes a first turbine and a second turbine. The first turbine is in fluid communication with the internal combustion engine. The first turbine receives a first portion exhaust gas discharged from the internal combustion engine and provides a first turbine exhaust gas. The second turbine is in fluid communication with the first turbine via an inter-stage channel. The inter-stage channel transports the first turbine exhaust gas from the first turbine to the second turbine. The inter-stage channel is in thermal connection with an exhaust gas recirculation channel defined between an inlet and an outlet of the internal combustion engine. The first turbine exhaust gas flowing through the inter-stage channel is capable of being heated by a second portion exhaust gas discharged from the internal combustion engine and flowing through the exhaust gas recirculation channel.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: January 6, 2015
    Assignee: General Electric Company
    Inventors: Rodrigo Rodriguez Erdmenger, Cathal Clancy, Daniel Edward Loringer, Jassin Marcel Fritz, Neil Xavier Blythe, Lukas William Johnson, Sebastian Walter Freund, Pierre Sébastien Huck, Jonathan Edward Nagurney, Yu Du, Matthias Lang, Rudolf Konrad Selmeier, Elisa Jubany Arribas
  • Publication number: 20150000268
    Abstract: The method includes moving at least one of a first support and a second support to vary a position of the plurality of main blades and tandem blades relative to each other to control one or more flow control characteristics across the turbine. The turbine includes a nozzle having the plurality of main blades and tandem blades. The plurality of main blades are coupled to the first support and the plurality of tandem blades are coupled to the second support disposed spaced apart from the first support.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: Cathal Clancy, Daniel Edward Loringer, Rodrigo Rodriguez Erdmenger, Vittorio Michelassi
  • Publication number: 20140017099
    Abstract: An exemplary compressor is provided. The compressor includes a plurality of blades, a hub defining a front surface and a back surface, and a first flow restriction structure provided at the back surface of the hub. The plurality of blades are arranged in a predefined manner on the front surface for receiving input air flow at a first pressure and compressing the input air flow to provide an output air flow at a second pressure higher than the first pressure. The first flow restriction member is configured for preventing at least a portion of the output air flow at the second pressure from entering into the back surface of the hub to reduce an air pressure at the back surface of the hub.
    Type: Application
    Filed: July 16, 2012
    Publication date: January 16, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Rodrigo Rodriguez Erdmenger, Kendall Roger Swenson, Daniel Edward Loringer, Anthony Holmes Furman, Neil Xavier Blythe, Lukas William Johnson, Jonathan Edward Nagurney, Yu Du, Cathal Clancy, Matthias Lang
  • Publication number: 20140013740
    Abstract: An exemplary turbocharger system for an internal combustion engine is provided. The turbocharger system includes a first turbine and a second turbine. The first turbine is in fluid communication with the internal combustion engine. The first turbine receives a first portion exhaust gas discharged from the internal combustion engine and provides a first turbine exhaust gas. The second turbine is in fluid communication with the first turbine via an inter-stage channel. The inter-stage channel transports the first turbine exhaust gas from the first turbine to the second turbine. The inter-stage channel is in thermal connection with an exhaust gas recirculation channel defined between an inlet and an outlet of the internal combustion engine. The first turbine exhaust gas flowing through the inter-stage channel is capable of being heated by a second portion exhaust gas discharged from the internal combustion engine and flowing through the exhaust gas recirculation channel.
    Type: Application
    Filed: July 16, 2012
    Publication date: January 16, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Rodrigo Rodriguez Erdmenger, Cathal Clancy, Daniel Edward Loringer, Jassin Marcel Fritz, Neil Xavier Blythe, Lukas William Johnson, Sebastian Walter Freund, Pierre Sébastien Huck, Jonathan Edward Nagurney, Yu Du, Matthias Lang, Rudolf Konrad Selmeier, Elisa Jubany Arribas