Patents by Inventor Catherine Catino Latshaw
Catherine Catino Latshaw has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10415760Abstract: Controlling flow of gas in a gas pipeline network, wherein flow of gas within each of the pipeline segments is associated with a direction (positive or negative). Processors calculate minimum and maximum production rates (bounds) at the gas production plant to satisfy an energy consumption constraint over a period of time. The production rate bounds are used to calculate minimum and maximum signed flow rates (bounds) for each pipeline segment. A nonlinear pressure drop relationship is linearized to create a linear pressure drop model for each pipeline segment. A network flow solution is calculated, using the linear pressure drop model, comprising flow rates for each pipeline segment to satisfy demand constraints and pressures for each of a plurality of network nodes over the period of time to satisfy pressure constraints. The network flow solution is associated with control element setpoints used to control one or more control elements.Type: GrantFiled: January 16, 2018Date of Patent: September 17, 2019Assignee: Air Products and Chemicals, Inc.Inventors: Joshua David Isom, Andrew Timothy Stamps, Catherine Catino Latshaw, Ali Esmaili, Camilo Mancilla
-
Patent number: 10323798Abstract: A system and method for controlling delivery of gas, including a gas pipeline network having at least one gas production plant, at least one gas receipt facility of a customer, a plurality of pipeline segments, and a plurality of control elements, one or more controllers, and one or more processors. The hydraulic feasibility of providing an increased flow rate of the gas to the gas receipt facility of the customer is determined using a linearized pressure drop model. A latent demand of the customer for the gas is estimated using a latent demand model. Based on the hydraulic feasibility and the latent demand, a new gas flow request rate from the customer is received. A network flow solution is calculated based on the new gas flow request rate. The network flow solution is associated with control element setpoints used by a controller to control one or more control elements.Type: GrantFiled: January 2, 2018Date of Patent: June 18, 2019Assignee: Air Products and Chemicals, Inc.Inventors: Ali Esmaili, Catherine Catino Latshaw, Eric J. Guter, Joshua David Isom
-
Publication number: 20180299075Abstract: A system and method for controlling delivery of gas, including a gas pipeline network having at least one gas production plant, at least one gas receipt facility of a customer, a plurality of pipeline segments, and a plurality of control elements, one or more controllers, and one or more processors. The hydraulic feasibility of providing an increased flow rate of the gas to the gas receipt facility of the customer is determined using a linearized pressure drop model. A latent demand of the customer for the gas is estimated using a latent demand model. Based on the hydraulic feasibility and the latent demand, a new gas flow request rate from the customer is received. A network flow solution is calculated based on the new gas flow request rate. The network flow solution is associated with control element setpoints used by a controller to control one or more control elements.Type: ApplicationFiled: January 2, 2018Publication date: October 18, 2018Applicant: Air Products and Chemicals, Inc.Inventors: Ali Esmaili, Catherine Catino Latshaw, Eric J. Guter, Joshua David Isom
-
Publication number: 20180299077Abstract: Controlling flow of gas in a gas pipeline network, wherein flow of gas within each of the pipeline segments is associated with a direction (positive or negative). Processors calculate minimum and maximum production rates (bounds) at the gas production plant to satisfy an energy consumption constraint over a period of time. The production rate bounds are used to calculate minimum and maximum signed flow rates (bounds) for each pipeline segment. A nonlinear pressure drop relationship is linearized to create a linear pressure drop model for each pipeline segment. A network flow solution is calculated, using the linear pressure drop model, comprising flow rates for each pipeline segment to satisfy demand constraints and pressures for each of a plurality of network nodes over the period of time to satisfy pressure constraints. The network flow solution is associated with control element setpoints used to control one or more control elements.Type: ApplicationFiled: January 16, 2018Publication date: October 18, 2018Applicant: Air Products and Chemicals, Inc.Inventors: Joshua David Isom, Andrew Timothy Stamps, Catherine Catino Latshaw, Ali Esmaili, Camilo Mancilla
-
Patent number: 9915399Abstract: Controlling flow of gas in a gas pipeline network, wherein flow of gas within each pipeline segment is associated with a direction (positive or negative). Minimum and maximum delivery rates to each gas receipt facility are determined. Lower and upper flow bounds of gas delivery rate are created by bounding minimum and maximum signed flow rates using minimum and maximum delivery rates, respectively, for each pipe segment. A pressure drop relationship for each pipeline segment within the lower and upper flow bounds is linearized to create a linear pressure drop model for each pipeline segment. A network flow solution is calculated, which includes flow rates for each pipeline segment and pressures for each network nodes to satisfy the lower and upper flow bounds on the gas delivery rate. The network flow solution is associated with control element setpoints used by a controller to control one or more control elements.Type: GrantFiled: April 18, 2017Date of Patent: March 13, 2018Assignee: Air Products and Chemicals, Inc.Inventors: Catherine Catino Latshaw, Ali Esmaili, Joshua David Isom, Camilo Mancilla
-
Patent number: 9897260Abstract: Controlling flow of gas in an gas pipeline network, wherein flow of gas within each of the pipeline segments is associated with a direction (positive or negative). Processors calculate minimum and maximum production rates (bounds) at the gas production plant to satisfy an energy consumption constraint over a period of time. The production rate bounds are used to calculate minimum and maximum signed flow rates (bounds) for each pipeline segment. A nonlinear pressure drop relationship is linearized to create a linear pressure drop model for each pipeline segment. A network flow solution is calculated, using the linear pressure drop model, comprising flow rates for each pipeline segment to satisfy demand constraints and pressures for each of a plurality of network nodes over the period of time to satisfy pressure constraints. The network flow solution is associated with control element setpoints used to control one or more control elements.Type: GrantFiled: April 18, 2017Date of Patent: February 20, 2018Assignee: Air Products and Chemicals, Inc.Inventors: Camilo Mancilla, Ali Esmaili, Joshua David Isom, Catherine Catino Latshaw, Oliver Jacob Smith, IV
-
Patent number: 9890908Abstract: A system and method for controlling delivery of gas, including a gas pipeline network having at least one gas production plant, at least one gas receipt facility of a customer, a plurality of pipeline segments, and a plurality of control elements, one or more controllers, and one or more processors. The hydraulic feasibility of providing an increased flow rate of the gas to the gas receipt facility of the customer is determined using a linearized pressure drop model. A latent demand of the customer for the gas is estimated using a latent demand model. Based on the hydraulic feasibility and the latent demand, a new gas flow request rate from the customer is received. A network flow solution is calculated based on the new gas flow request rate. The network flow solution is associated with control element setpoints used by a controller to control one or more control elements.Type: GrantFiled: April 18, 2017Date of Patent: February 13, 2018Assignee: Air Products and Chemicals, Inc.Inventors: Ali Esmaili, Catherine Catino Latshaw, Eric J. Guter, Joshua David Isom
-
Patent number: 9547822Abstract: A computer-implemented system and method for producing and distributing at least one product from at least one plant to at least one customer where discretized plant production data, filtered customer sourcing data, forecasted customer demand data, and forecasted plant electricity pricing data are input into a modified genetic algorithm and an electronic processor solves the modified genetic algorithm and outputs the solution to an interface. The system and method is flexible and can incorporate data as it becomes available to yield intermediate solutions for quick decision making.Type: GrantFiled: May 12, 2011Date of Patent: January 17, 2017Assignee: Air Products and Chemicals, Inc.Inventors: Ali Esmaili, Catherine Catino Latshaw, Sharad Kumar, Montgomery M. Alger
-
Publication number: 20130275175Abstract: A computer-implemented system and method for producing and distributing at least one product from at least one plant to at least one customer where discretized plant production data, filtered customer sourcing data, forecasted customer demand data, and forecasted plant electricity pricing data are input into a modified genetic algorithm and an electronic processor solves the modified genetic algorithm and outputs the solution to an interface. The system and method is flexible and can incorporate data as it becomes available to yield intermediate solutions for quick decision making.Type: ApplicationFiled: May 12, 2011Publication date: October 17, 2013Applicant: Air Products and Chemicals, Inc.Inventors: Ali Esmaili, Catherine Catino Latshaw, Sharad Kumar, Montgomery M. Alger
-
Publication number: 20130060712Abstract: Fractionating and allocating a cost of delivery of a product to at least one customer from at least one plant where the at least one customer is at a first location and requires a first amount of product, and wherein the plant is at a second location and has a capacity to produce and distribute a second amount of product, the method comprising: obtaining, historical actual trip data; eliminating, outlier data to calculate cleaned trip data; calculating a fixed cost for delivery to the at least one customer; calculating a variable cost for the delivery to the at least one customer; calculating an actual fractional cost for the delivery of the product to the at least one customer: and calculating a predicted fractional cost for the delivery of the product to the at least one customer.Type: ApplicationFiled: May 24, 2010Publication date: March 7, 2013Applicant: AIR PRODUCTS AND CHEMICALS, INC.Inventors: Ali Esmaili, Sharad Kumar, Brian Keith Petersen, Catherine Catino Latshaw
-
Patent number: 5761927Abstract: A process is set forth for the cryogenic distillation of an air feed to produce nitrogen, particularly high pressure nitrogen of ultra high purity (less than 100 parts per billion of oxygen). A key to the present invention is that, in addition to the conventional reboiler/condenser which links the high and low pressure column, the present invention utilizes two additional reboiler/condensers such that the oxygen rich liquid which collects at the bottom of the low pressure column is reboiled at three different pressure levels.Type: GrantFiled: April 29, 1997Date of Patent: June 9, 1998Assignee: Air Products and Chemicals, Inc.Inventors: Rakesh Agrawal, Catherine Catino Latshaw