Patents by Inventor Catherine Leatherdale

Catherine Leatherdale has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210190868
    Abstract: Method for active battery management to optimize battery performance. The method includes providing signal injections for charging and discharging of a battery. The signal injections include various charging and discharging profiles, rates, and endpoints. Response signals corresponding with the signal injections are received, and a utility of those signals is measured. Based upon the utility of the response signals, data relating to charging and discharging of the battery is modified to optimize battery performance.
    Type: Application
    Filed: September 3, 2019
    Publication date: June 24, 2021
    Inventors: Gilles J. Benoit, Catherine A. Leatherdale, Don Vincent West, Vincent J.L. Chevrier, Brandon A. Bartling
  • Patent number: 10962688
    Abstract: A display film includes a transparent cross-linked polyurethane layer. The transparent cross-linked polyurethane layer having a glass transition temperature of 10 degrees Celsius or less and a Tan Delta peak value of 0.5 or greater.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: March 30, 2021
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: David S. Thompson, Ryan M. Braun, Joseph D. Rule, Catherine A. Leatherdale, Steven D. Solomonson, Peter D. Condo, John J. Stradinger, Michael A. Johnson, Richard J. Pokorny, Derek W. Patzman, Peihui Zhang, Evan L. Breedlove
  • Patent number: 10882283
    Abstract: A display film comprises a transparent glass layer including two or more co-planar glass layer segments and a thickness defined by a first major surface and a second major surface opposing the first major surface being less than 500 micrometers; interstitial polymer material separating adjacent segments; and transparent energy dissipation layer having a glass transition temperature of 27 degrees Celsius or less and a Tan Delta peak value of 0.5 or greater and being disposed on the first major surface.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: January 5, 2021
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Joseph W. Woody, V, David S. Thompson, Steven D. Solomonson, John J. Stradinger, Ryan M. Braun, Joseph D. Rule, Peter D. Condo, Catherine A. Leatherdale, Michael A. Johnson
  • Publication number: 20200377752
    Abstract: A hardcoat composition includes one or more multifunctional (meth)acrylate monomers, and a nanoparticle mixture dispersed within the one or more multifunctional (meth)acrylate monomers. The nanoparticle mixture includes a first population of reactive nanoparticles. The first population of reactive nanoparticles have an average particle diameter in a range from 5 nm to 60 nm, and a second population of non-reactive nanoparticles. The second population of non-reactive nanoparticles have an average particle diameter in a range from 5 nm to 60 mn.
    Type: Application
    Filed: December 6, 2018
    Publication date: December 3, 2020
    Inventors: Peter D. Condo, D. Scott Thompson, John J. Stradinger, Catherine A. Leatherdale, Richard J. Pokorny, Steven D. Solomonson
  • Publication number: 20200309999
    Abstract: A display film includes a transparent cross-linked polyurethane layer. The transparent cross-linked polyurethane layer having a glass transition temperature of 10 degrees Celsius or less and a Tan Delta peak value of 0.5 or greater.
    Type: Application
    Filed: June 29, 2017
    Publication date: October 1, 2020
    Inventors: David S. THOMPSON, Ryan M. BRAUN, Joseph D. RULE, Catherine A. LEATHERDALE, Steven D. SOLOMONSON, Peter D. CONDO, John J. STRADINGER, Michael A. JOHNSON, Richard J. POKORNY, Derek W. PATZMAN, Peihui ZHANG, Evan L. BREEDLOVE
  • Publication number: 20200028117
    Abstract: A display film includes a transparent polymeric substrate layer and a transparent energy dissipation layer disposed on the transparent polymeric substrate layer. The transparent energy dissipation layer includes cross-linked polyurethane and a polyacrylate polymer. The transparent energy dissipation layer has a glass transition temperature of 27 degrees Celsius or less and a Tan Delta peak value of 0.5 or greater.
    Type: Application
    Filed: November 30, 2017
    Publication date: January 23, 2020
    Inventors: Karissa L. ECKERT, David Scott THOMPSON, Ryan M. BRAUN, Catherine A. LEATHERDALE, Michael A. JOHNSON, Steven D. SOLOMONSON, Richard J. POKORNY, John J. STRADINGER, Kevin R. SCHAFFER, Joseph D. RULE, Peter D. CONDO, Derek W. PATZMAN
  • Publication number: 20200016868
    Abstract: A display film includes a transparent glass layer having a thickness of 250 micrometers or less, or in a range from 25 to 100 micrometers. A transparent energy dissipation layer is fixed to the transparent glass layer. The transparent energy dissipation layer has a glass transition temperature of 27 degrees Celsius or less, a Tan Delta peak value of 0.5 or greater, or from 1 to 2 and a Young's Modulus (E?) greater than 0.9 MPa over a temperature range of ?40 degrees Celsius to 70 degrees Celsius. In a preferred embodiment, the transparent energy dissipation layer comprises a cross-linked polyurethane layer or a cross-linked polyurethane acrylate layer.
    Type: Application
    Filed: September 21, 2017
    Publication date: January 16, 2020
    Inventors: Joseph W. WOODY, V, David Scott THOMPSON, Catherine A. LEATHERDALE, Ryan M. BRAUN, Michael A. JOHNSON, Steven D. SOLOMONSON, John J. STRADINGER, Lyudmila A. PEKUROVSKY, Joseph D. RULE, Peter D. CONDO
  • Publication number: 20200001577
    Abstract: A display film comprises a transparent glass layer including two or more co-planar glass layer segments and a thickness defined by a first major surface and a second major surface opposing the first major surface being less than 500 micrometers; interstitial polymer material separating adjacent segments; and transparent energy dissipation layer having a glass transition temperature of 27 degrees Celsius or less and a Tan Delta peak value of 0.5 or greater and being disposed on the first major surface.
    Type: Application
    Filed: December 14, 2017
    Publication date: January 2, 2020
    Inventors: Joseph W. WOODY, V, David S. THOMPSON, Steven D. SOLOMONSON, John J. STRADINGER, Ryan M. BRAUN, Joseph D. RULE, Peter D. CONDO, Catherine A. LEATHERDALE, Michael A. JOHNSON
  • Publication number: 20190380217
    Abstract: Electronic Devices Incorporating Flexible Component Layers with Interlocking Devices At least some aspects of the present disclosure directs to an electronic device 100 comprising a rigid member 100A, 100B, a flexible component layer 130, and an interlocking device 110A, HOB disposed between the flexible component layer and the rigid member. The flexible component layer has at least two sections when the flexible component layer is flexed. The interlocking device comprises a first interlocking component attached to or integrated with the flexible component layer, and a second interlocking component attached to or integrated with the rigid member configured to engage with the first interlocking component, such that the engagement prevents the separation of the flexible component layer from the rigid member along a direction generally perpendicular to a surface of the rigid member.
    Type: Application
    Filed: November 22, 2017
    Publication date: December 12, 2019
    Inventors: Dylan T. Cosgrove, Catherine A. Leatherdale, Fay T. Salmon, Jun Fujita, Albert I. Everaerts
  • Patent number: 10431635
    Abstract: A flexible OLED display device that includes an upper module having a cover window film, a lower module, and a display module between the upper and lower modules. The display module includes an OLED and an OLED substrate. The stiffnesses of components in the display device are controlled to satisfy a particular relationship such that the bending stiffnesses of the upper and lower modules are tuned in order to position the neutral bending plane below the display module, which places the display into a state of compressive strain as opposed to zero strain. This design is suitable for a bifold flexible display in which the upper module can be folded to face itself.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: October 1, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Evan L. Breedlove, Catherine A. Leatherdale, Lyudmila A. Pekurovsky, Peihui Zhang
  • Publication number: 20190211168
    Abstract: A display film includes a transparent cross-linked polyurethane acrylate layer. The transparent cross-linked polyurethane acrylate layer having a glass transition temperature of 10 degrees Celsius or less and a Tan Delta peak value of 0.5 or greater.
    Type: Application
    Filed: June 6, 2017
    Publication date: July 11, 2019
    Inventors: David Scott THOMPSON, Steven D. SOLOMONSON, Karissa Lynn ECKERT, John James STRADINGER, Catherine A. LEATHERDALE, Peter D. CONDO, Richard J. POKORNY, Ryan M. BRAUN, Michael A. JOHNSON, Joseph D. RULE, Kevin R. SCHAFFER, Derek W. PATZMAN
  • Publication number: 20190051705
    Abstract: A flexible OLED display device that includes an upper module having a cover window film, a lower module, and a display module between the upper and lower modules. The display module includes an OLED and an OLED substrate. The stiffnesses of components in the display device are controlled to satisfy a particular relationship such that the bending stiffnesses of the upper and lower modules are tuned in order to position the neutral bending plane below the display module, which places the display into a state of compressive strain as opposed to zero strain. This design is suitable for a bifold flexible display in which the upper module can be folded to face itself.
    Type: Application
    Filed: October 17, 2018
    Publication date: February 14, 2019
    Inventors: Evan L. Breedlove, Catherine A. Leatherdale, Lyudmila A. Pekurovsky, Peihui Zhang
  • Patent number: 10147772
    Abstract: A flexible OLED display device that includes an upper module having a cover window film, a lower module, and a display module between the upper and lower modules. The display module includes an OLED and an OLED substrate. The stiffnesses of components in the display device are controlled to satisfy a particular relationship such that the bending stiffnesses of the upper and lower modules are tuned in order to position the neutral bending plane below the display module, which places the display into a state of compressive strain as opposed to zero strain. This design is suitable for a bifold flexible display in which the upper module can be folded to face itself.
    Type: Grant
    Filed: August 23, 2016
    Date of Patent: December 4, 2018
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Evan L. Breedlove, Catherine A. Leatherdale, Lyudmila A. Pekurovsky, Peihui Zhang
  • Patent number: 10090480
    Abstract: A display film includes a transparent polymeric substrate layer and a transparent aliphatic cross-linked polyurethane layer disposed on the transparent polymeric substrate layer. The transparent aliphatic cross-linked polyurethane layer has a glass transition temperature in a range from 11 to 27 degrees Celsius and a Tan Delta peak value in a range from 0.5 to 2.5. The display film has a haze value of 1% or less.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: October 2, 2018
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Michael A. Johnson, David Scott Thompson, Catherine A. Leatherdale, John J. Stradinger, Evan L. Breedlove, Steven D. Solomonson, Ryan M. Braun, Kevin R. Schaffer, Peihui Zhang, Joseph D. Rule
  • Publication number: 20180264790
    Abstract: A display film includes a transparent polymeric substrate layer having a 0.2% offset yield stress greater than 110 MPa and a transparent aliphatic cross-linked polyurethane layer having a thickness of 100 micrometers or less disposed on the transparent polymeric substrate layer. The transparent aliphatic cross-linked polyurethane layer has a glass transition temperature in a range from 11 to 27 degrees Celsius and a Tan Delta peak value in a range from 0.5 to 2.5. The display film has a haze value of 2% or less.
    Type: Application
    Filed: May 23, 2018
    Publication date: September 20, 2018
    Inventors: Catherine A. Leatherdale, David Scott Thompson, Michael A. Johnson, John J. Stradinger, Evan L. Breedlove, Steven D. Solomonson, Joseph D. Rule
  • Patent number: 10005264
    Abstract: A display film includes a transparent polymeric substrate layer having a 0.2% offset yield stress greater than 110 MPa and a transparent aliphatic cross-linked polyurethane layer having a thickness of 100 micrometers or less disposed on the transparent polymeric substrate layer. The transparent aliphatic cross-linked polyurethane layer has a glass transition temperature in a range from 11 to 27 degrees Celsius and a Tan Delta peak value in a range from 0.5 to 2.5. The display film has a haze value of 2% or less.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: June 26, 2018
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Catherine A. Leatherdale, David Scott Thompson, Michael A. Johnson, John J. Stradinger, Evan L. Breedlove, Steven D. Solomonson, Joseph D. Rule
  • Patent number: 9944031
    Abstract: Molded optical articles and methods of making them are disclosed herein. Optical articles comprise a photopolymerizable composition disposed on a major surface of a substrate. The photopolymerizable composition comprises: a silicon-containing resin comprising silicon-bonded hydrogen and aliphatic unsaturation, and a platinum catalyst providing from about 0.5 to about 30 parts per million of platinum. The major surface imparts a positive or negative lens to the photopolymerizable composition. Optical articles also include those that have been photopolymerized using actinic radiation having a wavelength of 700 nm or less.
    Type: Grant
    Filed: January 23, 2008
    Date of Patent: April 17, 2018
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: D. Scott Thompson, Larry D. Boardman, Fedja Kecman, Catherine Leatherdale
  • Publication number: 20180061893
    Abstract: A flexible OLED display device that includes an upper module having a cover window film, a lower module, and a display module between the upper and lower modules. The display module includes an OLED and an OLED substrate. The stiffnesses of components in the display device are controlled to satisfy a particular relationship such that the bending stiffnesses of the upper and lower modules are tuned in order to position the neutral bending plane below the display module, which places the display into a state of compressive strain as opposed to zero strain. This design is suitable for a bifold flexible display in which the upper module can be folded to face itself.
    Type: Application
    Filed: August 23, 2016
    Publication date: March 1, 2018
    Inventors: Evan L. Breedlove, Catherine A. Leatherdale, Lyudmila A. Pekurovsky, Peihui Zhang
  • Publication number: 20170365804
    Abstract: A display film includes a transparent polymeric substrate layer and a transparent aliphatic cross-linked polyurethane layer disposed on the transparent polymeric substrate layer. The transparent aliphatic cross-linked polyurethane layer has a glass transition temperature in a range from 11 to 27 degrees Celsius and a Tan Delta peak value in a range from 0.5 to 2.5. The display film has a haze value of 1% or less.
    Type: Application
    Filed: August 30, 2017
    Publication date: December 21, 2017
    Inventors: Michael A. Johnson, David Scott Thompson, Catherine A. Leatherdale, John J. Stradinger, Evan L. Breedlove, Steven D. Solomonson, Ryan M. Braun, Kevin R. Schaffer, Peihui Zhang, Joseph D. Rule
  • Patent number: 9780318
    Abstract: A display film includes a transparent polymeric substrate layer and a transparent aliphatic cross-linked polyurethane layer disposed on the transparent polymeric substrate layer. The transparent aliphatic cross-linked polyurethane layer has a glass transition temperature in a range from 11 to 27 degrees Celsius and a Tan Delta peak value in a range from 0.5 to 2.5. The display film has a haze value of 1% or less.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: October 3, 2017
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Michael A. Johnson, David Scott Thompson, Catherine A. Leatherdale, John J. Stradinger, Evan L. Breedlove, Steven D. Solomonson, Ryan M. Braun, Kevin R. Schaffer, Peihui Zhang, Joseph D. Rule