Patents by Inventor Catherine M. Carneal

Catherine M. Carneal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230147160
    Abstract: A blunt force sensor array for application to a non-planar surface includes a flexible thin-film substrate, a plurality of force sensors secured to the flexible thin-film substrate proximate to a center measurement point, a strain gauge secured on the flexible thin-film substrate proximate to the center measurement point, and a sensor interface configured to connect to external measurement and control circuitry. The sensor interface may be electrically connected to each of the force sensors and the strain gauge via traces disposed on the flexible thin-film substrate. The flexibility and shape of the flexible thin-film substrate may permit the blunt force sensor array to be applied to the non-planar surface to detect forces and strains experienced by the non-planar surface in response to a blunt force event on the non-planar surface.
    Type: Application
    Filed: January 31, 2022
    Publication date: May 11, 2023
    Inventors: Edwin B. Gienger, IV, John B. Helder, Morgana M. Trexler, Catherine M. Carneal, Christopher J. Dohopolski, James C. Gurganus, William H. Mermagen, Michael S. Horsmon
  • Patent number: 11378475
    Abstract: A system provided herein may be configured to evaluate helmet performance. The system may include an impact assembly that includes a stationary post operably coupled to one or more stationary load cells and a plurality of modular headforms. Each modular headform may include a first side and a second side configured to lock together around the impact assembly and receive a helmet. The modular headform may determine a position of the helmet relative to the one or more stationary load cells. Furthermore, the one or more stationary load cells may be configured to measure impact force at a position where one of the plurality of the modular headforms are operably coupled to the impact assembly. Additionally, each of the plurality of modular headforms correspond to a position in relation to the impact assembly to measure the impact force to the one or more load cells at a predefined number of impact locations on the helmet to evaluate the performance of the helmet.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: July 5, 2022
    Assignee: The Johns Hopkins University
    Inventors: Morgana M. Trexler, Vanessa D. Alphonse, Matthew G. Bevan, Catherine M. Carneal, Quang T. Luong, Mark A. Athey, Kathleen M. Perrino, Andrew C. Merkle, Jeffrey M. Paulson, Steven M. Storck
  • Publication number: 20210048359
    Abstract: A system provided herein may be configured to evaluate helmet performance. The system may include an impact assembly that includes a stationary post operably coupled to one or more stationary load cells and a plurality of modular headforms. Each modular headform may include a first side and a second side configured to lock together around the impact assembly and receive a helmet. The modular headform may determine a position of the helmet relative to the one or more stationary load cells. Furthermore, the one or more stationary load cells may be configured to measure impact force at a position where one of the plurality of the modular headforms are operably coupled to the impact assembly. Additionally, each of the plurality of modular headforms correspond to a position in relation to the impact assembly to measure the impact force to the one or more load cells at a predefined number of impact locations on the helmet to evaluate the performance of the helmet.
    Type: Application
    Filed: January 8, 2019
    Publication date: February 18, 2021
    Inventors: Morgana M. Trexler, Vanessa D. Alphonse, Matthew G. Bevan, Catherine M. Carneal, Quang T. Luong, Mark A. Athey, Kathleen M. Perrino, Andrew C. Merkle, Jeffrey M. Paulson, Steven M. Storck
  • Patent number: 9808987
    Abstract: A surrogate multilayered material and manufacturing method thereof includes a first fiber reinforced layer, the first reinforced layer including a crosslinked polymer and fibers, and a second fiber reinforced layer, the second reinforced layer including the crosslinked polymer and the fibers. A foam layer is disposed between the first and second fiber reinforced layers. Opposite faces of the foam layer are in direct contact with the first fiber reinforced layer and the second fiber reinforced layer. The foam layer has a compressive strength of about 3.5 to about 4.5 MPa, when measured as per ASTM-D-1621-73, and a shear strength of 1.50 to about 2.15 MPa, when measured as per ASTM-C-273.
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: November 7, 2017
    Assignee: The Johns Hopkins University
    Inventors: Andrew C. Merkle, Jack C. Roberts, Catherine M. Carneal, Jeffrey M. Paulson, Matthew S. Johannes, Liming M. Voo
  • Patent number: 9142146
    Abstract: A surrogate multilayered material includes a first fiber reinforced layer; the first reinforced layer including a crosslinked polymer and fibers; a second fiber reinforced layer; the second reinforced layer including the crosslinked polymer and the fibers; a foam layer; the foam layer disposed between the first fiber reinforced layer and the second fiber reinforced layer; where opposite faces of the foam layer are in direct contact with the first fiber reinforced layer and the second fiber reinforced layer; the foam layer having a compressive strength of about 3.5 to about 4.5 MPa, when measured as per ASTM-D-1621-73, and a shear strength of 1.50 to about 2.15 MPa, when measured as per ASTM-C-273.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: September 22, 2015
    Assignee: The Johns Hopkins University
    Inventors: Andrew C. Merkle, Jack C. Roberts, Catherine M. Carneal, Jeffrey M. Paulson, Matthew S. Johannes, Liming M. Voo
  • Publication number: 20140302306
    Abstract: A surrogate multilayered material includes a first fiber reinforced layer; the first reinforced layer including a crosslinked polymer and fibers; a second fiber reinforced layer; the second reinforced layer including the crosslinked polymer and the fibers; a foam layer; the foam layer disposed between the first fiber reinforced layer and the second fiber reinforced layer; where opposite faces of the foam layer are in direct contact with the first fiber reinforced layer and the second fiber reinforced layer; the foam layer having a compressive strength of about 3.5 to about 4.5 MPa, when measured as per ASTM-D-1621-73, and a shear strength of 1.50 to about 2.15 MPa, when measured as per ASTM-C-273.
    Type: Application
    Filed: June 4, 2012
    Publication date: October 9, 2014
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Andrew C. Merkle, Jack C. Roberts, Catherine M. Carneal, Jeffrey M. Paulson, Matthew S. Johannes, Liming M. Voo