Patents by Inventor Catherine Riddle

Catherine Riddle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240118214
    Abstract: A method for rapid detection of actinides including the steps of having a support including a colorimetric complexation, placing the support in communication with a sample through urinalysis, and receiving a visual indicator from the colorimetric complexation. The sample having an unknown concentration of at least one actinide within it. The colorimetric complexation is configured to activate when contacted by a threshold concentration of an actinide.
    Type: Application
    Filed: December 15, 2023
    Publication date: April 11, 2024
    Inventors: Catherine Riddle, Rick Demmer
  • Patent number: 11898960
    Abstract: A method for rapid detection of actinides including the steps of having a support including a colorimetric complexation, placing the support in communication with a sample through urinalysis, and receiving a visual indicator from the colorimetric complexation. The sample having an unknown concentration of at least one actinide within it. The colorimetric complexation is configured to activate when contacted by a threshold concentration of an actinide.
    Type: Grant
    Filed: September 2, 2021
    Date of Patent: February 13, 2024
    Assignee: U.S. Department of Energy
    Inventors: Catherine Riddle, Rick L. Demmer
  • Publication number: 20210396680
    Abstract: A method for rapid detection of actinides including the steps of having a support including a colorimetric complexation, placing the support in communication with a sample through urinalysis, and receiving a visual indicator from the colorimetric complexation. The sample having an unknown concentration of at least one actinide within it. The colorimetric complexation is configured to activate when contacted by a threshold concentration of an actinide.
    Type: Application
    Filed: September 2, 2021
    Publication date: December 23, 2021
    Inventors: Catherine Riddle, Rick L. Demmer
  • Publication number: 20200400583
    Abstract: A method for rapid detection of actinides including the steps of having a support including a colorimetric complexation, placing the support in communication with a sample, and receiving a visual indicator from the colorimetric complexation. The sample having an unknown concentration of at least one actinide within it. The colorimetric complexation is configured to activate when contacted by a threshold concentration of an actinide.
    Type: Application
    Filed: June 8, 2020
    Publication date: December 24, 2020
    Inventors: Catherine Riddle, Rick L. Demmer
  • Patent number: 10773203
    Abstract: A xenon capture system that reduces the concentration of xenon in a carrier gas is disclosed. An example xenon capture system includes a carrier gas with a first concentration of xenon that flows through an intake into a chamber. Within the chamber is a reaction area that has at least one peripheral sidewall. The reaction area operates at a predetermined temperature, flow rate, and low pressure. Within the reaction area is at least one xenon capture mechanism that is at least partially formed of a transition metal. When the carrier gas is exposed to the xenon capture mechanism, the xenon capture mechanism adsorbs xenon from the carrier gas. The carrier gas, with a second concentration of xenon, exits the chamber through the exhaust outlet.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: September 15, 2020
    Assignee: U.S. Department of Energy
    Inventors: Catherine Riddle, Dawn M. Scates, Troy G. Garn, Matthew G. Watrous
  • Publication number: 20190091622
    Abstract: A xenon capture system that reduces the concentration of xenon in a carrier gas is disclosed. An example xenon capture system includes a carrier gas with a first concentration of xenon that flows through an intake into a chamber. Within the chamber is a reaction area that has at least one peripheral sidewall. The reaction area operates at a predetermined temperature, flow rate, and low pressure. Within the reaction area is at least one xenon capture mechanism that is at least partially formed of a transition metal. When the carrier gas is exposed to the xenon capture mechanism, the xenon capture mechanism adsorbs xenon from the carrier gas. The carrier gas, with a second concentration of xenon, exits the chamber through the exhaust outlet.
    Type: Application
    Filed: September 27, 2017
    Publication date: March 28, 2019
    Inventors: Catherine . Riddle, Dawn M. Scates, Troy G. Garn, Matthew G. Watrous
  • Publication number: 20050211955
    Abstract: A mixed extractant solvent including calix[4]arene-bis-(tert-octylbenzo)-crown-6 (“BOBCalixC6”), 4?,4?,(5?)-di-(t-butyldicyclo-hexano)-18-crown-6 (“DtBu18C6”), and at least one modifier dissolved in a diluent. The mixed extractant solvent may be used to remove cesium and strontium from an acidic solution. The DtBu18C6 may be present from approximately 0.01 M to approximately 0.4M, such as from approximately 0.086 M to approximately 0.108 M. The modifier may be 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol (“Cs-7SB”) and may be present from approximately 0.01M to approximately 0.8M. In one embodiment, the mixed extractant solvent includes approximately 0.15M DtBu18C6, approximately 0.007M BOBCalixC6, and approximately 0.75M Cs-7SB modifier dissolved in an isoparaffinic hydrocarbon diluent. The mixed extractant solvent may form an organic phase in an extraction system that also includes an aqueous phase. Methods of extracting cesium and strontium as well as strontium alone are also disclosed.
    Type: Application
    Filed: March 23, 2004
    Publication date: September 29, 2005
    Inventors: David Meikrantz, Terry Todd, Catherine Riddle, Jack Law, Dean Peterman, Bruce Mincher, Christopher McGrath, John Baker