Patents by Inventor Catherine Uyttenhove

Catherine Uyttenhove has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11957751
    Abstract: Specific binding members, particularly antibodies and fragments thereof, which bind to transforming growth factor beta 1 (TGF-?1) are provided, particularly recognizing human and mouse TGF-?1 and not recognizing or binding TGF-?2 or TGF-?3. Particular antibodies are provided which specifically recognize and neutralize TGF-?1. These antibodies are useful in the diagnosis and treatment of conditions associated with activated or elevated TGF-?1, including cancer, and for modulating immune cells and immune response, including immune response to cancer or cancer antigens. The anti-TGF-?1 antibodies, variable regions or CDR domain sequences thereof, and fragments thereof may also be used in therapy in combination with chemotherapeutics, immune modulators, or anti-cancer agents and/or with other antibodies or fragments thereof. Antibodies of this type are exemplified by the novel antibodies hereof, including antibody 13A1, whose sequences are provided herein.
    Type: Grant
    Filed: February 12, 2021
    Date of Patent: April 16, 2024
    Assignee: Ludwig Institute for Cancer Research, Ltd.
    Inventors: Jacques Van Snick, Catherine Uyttenhove, Thierry Boon
  • Publication number: 20230287094
    Abstract: Specific binding members, particularly antibodies and fragments thereof, which bind to transforming growth factor beta 3 (TGF-?3) are provided, particularly recognizing human and mouse TGF-?3, particularly antibodies and fragments that do not recognize or bind TGF-?1 or TGF-?2. Particular antibodies are provided which specifically recognize and neutralize TGF-?3. These antibodies are useful in the diagnosis and treatment of conditions associated with activated or elevated TGF-?3, including cancer, and for modulating immune cells and immune response, including immune response to cancer or cancer antigens. The anti-TGF-?3 antibodies, variable regions or CDR domain sequences thereof, and fragments thereof may also be used in therapy in combination with chemotherapeutics, immune modulators, or anti-cancer agents and/or with other antibodies or fragments thereof.
    Type: Application
    Filed: September 23, 2022
    Publication date: September 14, 2023
    Inventors: Jacques VAN SNICK, Catherine UYTTENHOVE
  • Patent number: 11485780
    Abstract: Specific binding members, particularly antibodies and fragments thereof, which bind to transforming growth factor beta 3 (TGF-?3) are provided, particularly recognizing human and mouse TGF-?3, particularly antibodies and fragments that do not recognize or bind TGF-?1 or TGF-?2. Particular antibodies are provided which specifically recognize and neutralize TGF-?3. These antibodies are useful in the diagnosis and treatment of conditions associated with activated or elevated TGF-?3, including cancer, and for modulating immune cells and immune response, including immune response to cancer or cancer antigens. The anti-TGF-?3 antibodies, variable regions or CDR domain sequences thereof, and fragments thereof may also be used in therapy in combination with chemotherapeutics, immune modulators, or anti-cancer agents and/or with other antibodies or fragments thereof.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: November 1, 2022
    Assignee: Ludwig Institute for Cancer Research, Ltd.
    Inventors: Jacques Van Snick, Catherine Uyttenhove
  • Publication number: 20210403545
    Abstract: Specific binding members, particularly antibodies and fragments thereof, which bind to transforming growth factor beta 1 (TGF-?1) are provided, particularly recognizing human and mouse TGF-?1 and not recognizing or binding TGF-?2 or TGF-?3. Particular antibodies are provided which specifically recognize and neutralize TGF-?1. These antibodies are useful in the diagnosis and treatment of conditions associated with activated or elevated TGF-?1, including cancer, and for modulating immune cells and immune response, including immune response to cancer or cancer antigens. The anti-TGF-?1 antibodies, variable regions or CDR domain sequences thereof, and fragments thereof may also be used in therapy in combination with chemotherapeutics, immune modulators, or anti-cancer agents and/or with other antibodies or fragments thereof. Antibodies of this type are exemplified by the novel antibodies hereof, including antibody 13A1, whose sequences are provided herein.
    Type: Application
    Filed: February 12, 2021
    Publication date: December 30, 2021
    Inventors: Jacques Van Snick, Catherine Uyttenhove, Thierry Boon
  • Patent number: 10947303
    Abstract: Specific binding members, particularly antibodies and fragments thereof, which bind to transforming growth factor beta 1 (TGF-?1) are provided, particularly recognizing human and mouse TGF-?1 and not recognizing or binding TGF-?2 or TGF-?3. Particular antibodies are provided which specifically recognize and neutralize TGF-?1. These antibodies are useful in the diagnosis and treatment of conditions associated with activated or elevated TGF-?1, including cancer, and for modulating immune cells and immune response, including immune response to cancer or cancer antigens. The anti-TGF-?1 antibodies, variable regions or CDR domain sequences thereof, and fragments thereof may also be used in therapy in combination with chemotherapeutics, immune modulators, or anti-cancer agents and/or with other antibodies or fragments thereof. Antibodies of this type are exemplified by the novel antibodies hereof, including antibody 13A1, whose sequences are provided herein.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: March 16, 2021
    Assignee: LUDWIG INSTITUTE FOR CANCER RESEARCH, LTD.
    Inventors: Jacques Van Snick, Catherine Uyttenhove, Thierry Boon
  • Publication number: 20200392221
    Abstract: Specific binding members, particularly antibodies and fragments thereof, which bind to transforming growth factor beta 3 (TGF-?3) are provided, particularly recognizing human and mouse TGF-?3, particularly antibodies and fragments that do not recognize or bind TGF-?1 or TGF-?2. Particular antibodies are provided which specifically recognize and neutralize TGF-?3. These antibodies are useful in the diagnosis and treatment of conditions associated with activated or elevated TGF-?3, including cancer, and for modulating immune cells and immune response, including immune response to cancer or cancer antigens. The anti-TGF-?3 antibodies, variable regions or CDR domain sequences thereof, and fragments thereof may also be used in therapy in combination with chemotherapeutics, immune modulators, or anti-cancer agents and/or with other antibodies or fragments thereof.
    Type: Application
    Filed: June 26, 2020
    Publication date: December 17, 2020
    Inventors: Jacques VAN SNICK, Catherine UYTTENHOVE
  • Patent number: 10723793
    Abstract: Specific binding members, particularly antibodies and fragments thereof, which bind to transforming growth factor beta 3 (TGF-?3) are provided, particularly recognizing human and mouse TGF-?3, particularly antibodies and fragments that do not recognize or bind TGF-?1 or TGF-?2. Particular antibodies are provided which specifically recognize and neutralize TGF-?3. These antibodies are useful in the diagnosis and treatment of conditions associated with activated or elevated TGF-?3, including cancer, and for modulating immune cells and immune response, including immune response to cancer or cancer antigens. The anti-TGF-?3 antibodies, variable regions or CDR domain sequences thereof, and fragments thereof may also be used in therapy in combination with chemotherapeutics, immune modulators, or anti-cancer agents and/or with other antibodies or fragments thereof.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: July 28, 2020
    Assignee: Ludwig Institute for Cancer Research, Ltd.
    Inventors: Jacques Van Snick, Catherine Uyttenhove
  • Publication number: 20190092847
    Abstract: Specific binding members, particularly antibodies and fragments thereof, which bind to transforming growth factor beta 1 (TGF-?1) are provided, particularly recognizing human and mouse TGF-?1 and not recognizing or binding TGF-?2 or TGF-?3. Particular antibodies are provided which specifically recognize and neutralize TGF-?1. These antibodies are useful in the diagnosis and treatment of conditions associated with activated or elevated TGF-?1, including cancer, and for modulating immune cells and immune response, including immune response to cancer or cancer antigens. The anti-TGF-?1 antibodies, variable regions or CDR domain sequences thereof, and fragments thereof may also be used in therapy in combination with chemotherapeutics, immune modulators, or anti-cancer agents and/or with other antibodies or fragments thereof. Antibodies of this type are exemplified by the novel antibodies hereof, including antibody 13A1, whose sequences are provided herein.
    Type: Application
    Filed: July 26, 2018
    Publication date: March 28, 2019
    Inventors: Jacques Van Snick, Catherine Uyttenhove, Thierry Boon
  • Patent number: 10035851
    Abstract: Specific binding members, particularly antibodies and fragments thereof, which bind to transforming growth factor beta 1 (TGF-?1) are provided, particularly recognizing human and mouse TGF-?1 and not recognizing or binding TGF-?2 or TGF-?3. Particular antibodies are provided which specifically recognize and neutralize TGF-?1. These antibodies are useful in the diagnosis and treatment of conditions associated with activated or elevated TGF-?1, including cancer, and for modulating immune cells and immune response, including immune response to cancer or cancer antigens. The anti-TGF-?1 antibodies, variable regions or CDR domain sequences thereof, and fragments thereof may also be used in therapy in combination with chemotherapeutics, immune modulators, or anti-cancer agents and/or with other antibodies or fragments thereof. Antibodies of this type are exemplified by the novel antibodies hereof, including antibody 13A1, whose sequences are provided herein.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: July 31, 2018
    Assignee: LUDWIG INSTITUTE FOR CANCER RESEARCH LTD.
    Inventors: Jacques Van Snick, Catherine Uyttenhove, Thierry Boon
  • Publication number: 20180148501
    Abstract: Specific binding members, particularly antibodies and fragments thereof, which bind to transforming growth factor beta 3 (TGF-?3) are provided, particularly recognizing human and mouse TGF-?3, particularly antibodies and fragments that do not recognize or bind TGF-?1 or TGF-?2. Particular antibodies are provided which specifically recognize and neutralize TGF-?3. These antibodies are useful in the diagnosis and treatment of conditions associated with activated or elevated TGF-?3, including cancer, and for modulating immune cells and immune response, including immune response to cancer or cancer antigens. The anti-TGF-?3 antibodies, variable regions or CDR domain sequences thereof, and fragments thereof may also be used in therapy in combination with chemotherapeutics, immune modulators, or anti-cancer agents and/or with other antibodies or fragments thereof.
    Type: Application
    Filed: June 10, 2016
    Publication date: May 31, 2018
    Inventors: Jacques VAN SNICK, Catherine UYTTENHOVE
  • Publication number: 20170137507
    Abstract: Specific binding members, particularly antibodies and fragments thereof, which bind to transforming growth factor beta 1 (TGF-?1) are provided, particularly recognizing human and mouse TGF-?1 and not recognizing or binding TGF-?2 or TGF-?3. Particular antibodies are provided which specifically recognize and neutralize TGF-?1. These antibodies are useful in the diagnosis and treatment of conditions associated with activated or elevated TGF-?1, including cancer, and for modulating immune cells and immune response, including immune response to cancer or cancer antigens. The anti-TGF-?1 antibodies, variable regions or CDR domain sequences thereof, and fragments thereof may also be used in therapy in combination with chemotherapeutics, immune modulators, or anti-cancer agents and/or with other antibodies or fragments thereof. Antibodies of this type are exemplified by the novel antibodies hereof, including antibody 13A1, whose sequences are provided herein.
    Type: Application
    Filed: November 2, 2016
    Publication date: May 18, 2017
    Inventors: Jacques Van Snick, Catherine Uyttenhove, Thierry Boon
  • Patent number: 9518112
    Abstract: Specific binding members, particularly antibodies and fragments thereof, which bind to transforming growth factor beta 1 (TGF-?1) are provided, particularly recognizing human and mouse TGF-?1 and not recognizing or binding TGF-?2 or TGF-?3. Particular antibodies are provided which specifically recognize and neutralize TGF-?1. These antibodies are useful in the diagnosis and treatment of conditions associated with activated or elevated TGF-?1, including cancer, and for modulating immune cells and immune response, including immune response to cancer or cancer antigens. The anti-TGF-?1 antibodies, variable regions or CDR domain sequences thereof, and fragments thereof may also be used in therapy in combination with chemotherapeutics, immune modulators, or anti-cancer agents and/or with other antibodies or fragments thereof. Antibodies of this type are exemplified by the novel antibodies hereof, including antibody 13A1, whose sequences are provided herein.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: December 13, 2016
    Assignee: Ludwig Institute for Cancer Research LTD
    Inventors: Jacques Van Snick, Catherine Uyttenhove, Thierry Boon
  • Publication number: 20150132319
    Abstract: Specific binding members, particularly antibodies and fragments thereof, which bind to transforming growth factor beta 1 (TGF-?1) are provided, particularly recognizing human and mouse TGF-?1 and not recognizing or binding TGF-?2 or TGF-?3. Particular antibodies are provided which specifically recognize and neutralize TGF-?1. These antibodies are useful in the diagnosis and treatment of conditions associated with activated or elevated TGF-?1, including cancer, and for modulating immune cells and immune response, including immune response to cancer or cancer antigens. The anti-TGF-?1 antibodies, variable regions or CDR domain sequences thereof, and fragments thereof may also be used in therapy in combination with chemotherapeutics, immune modulators, or anti-cancer agents and/or with other antibodies or fragments thereof. Antibodies of this type are exemplified by the novel antibodies hereof, including antibody 13A1, whose sequences are provided herein.
    Type: Application
    Filed: March 6, 2013
    Publication date: May 14, 2015
    Inventors: Jacques Van Snick, Catherine Uyttenhove, Thierry Boon
  • Publication number: 20080299134
    Abstract: The application describes neutralizing chimeric and humanized anti-human IL-9 antibodies, and the use thereof to identify neutralizing epitopes on human IL-9 and as medicaments to prevent and treat asthma, bronchial hyperresponsiveness, atopic allergy, and other related disorders. Particularly disclosed are recombinant antibodies derived from three murine anti-human IL-9 antibodies identified infra as MH9A3, MH9D1, and MH9L1.
    Type: Application
    Filed: March 17, 2008
    Publication date: December 4, 2008
    Applicants: MedImmune, Inc., Ludwig Institute for Cancer Research
    Inventors: Jennifer Lynne Reed, William Dall'Acqua, Jacques Van Snick, Jean-Christophe Renauld, Francoise Cormont, Catherine Uyttenhove
  • Patent number: 7371383
    Abstract: The application describes neutralizing chimeric and humanized anti-human IL-9 antibodies, and the use thereof to identify neutralizing epitopes on human IL-9 and as medicaments to prevent and treat asthma, bronchial hyperresponsiveness, atopic allergy, and other related disorders. Particularly disclosed are recombinant antibodies derived from three murine anti-human IL-9 antibodies identified infra as MH9A3, MH9D1, and MH9L1.
    Type: Grant
    Filed: April 11, 2003
    Date of Patent: May 13, 2008
    Assignees: MedImmune, Inc., Ludwig Institute for Cancer Research
    Inventors: Jennifer Lynne Reed, William Dall'Acqua, Jacques Van Snick, Jean-Christophe Renauld, Francoise Cormont, Catherine Uyttenhove
  • Publication number: 20070048261
    Abstract: The present invention provides improved vaccines and immunogenic compositions comprising IL-12 or IL-23, and processes for the preparation of such vaccines and immunogenic compositions.
    Type: Application
    Filed: December 14, 2004
    Publication date: March 1, 2007
    Applicant: GlaxoSmithKline Biologicals S.A.
    Inventors: Pascal Mettens, Catherine Uyttenhove, Jacques Van Snick
  • Publication number: 20030082150
    Abstract: A method for treating human tumours by gene therapy is disclosed. In particular, defective recombinant viruses with a sequence coding for a human tumour-specific antigen, and the use thereof for treating or preventing human tumours, as well as producing specific cytotoxic T-cells (CTLs) in vitro or ex vivo, are disclosed. Pharmaceutical compositions comprising said viruses, particularly in injectable form, are also disclosed.
    Type: Application
    Filed: October 5, 1998
    Publication date: May 1, 2003
    Inventors: THIERRY BOON-FALLEUR, MARIE-THERESE DUFFOUR, HEDI HADDADA, CHRISTOPHE LURQUIN, MICHEL PERRICAUDET, CATHERINE UYTTENHOVE-GHESQUIERE, GUY WARNIER
  • Publication number: 20020160011
    Abstract: The present invention provides improved adjuvant compositions comprising QS21/3DMPL and Interleukin 12. These find utility in a range of prophylatic and therapeutic vaccines, including cancer vaccines.
    Type: Application
    Filed: February 8, 2000
    Publication date: October 31, 2002
    Inventors: THIERRY BOON, SILVIA SILLA, CATHERINE UYTTENHOVE
  • Patent number: 6375945
    Abstract: The present invention pertains to improved adjuvant compositions comprising a mixture of a saponin adjuvant such as QS21 with monophosphoryl lipid A or derivative thereof such as 3D-MPL and interleukin 12. These compositions are useful in a range of prophylactic and therapeutic applications, particularly in vaccines, including cancer vaccines.
    Type: Grant
    Filed: February 8, 2000
    Date of Patent: April 23, 2002
    Assignee: SmithKline Beecham Biologicals s.a.
    Inventors: Thierry Boon, Silvia Silla, Catherine Uyttenhove
  • Patent number: 5750377
    Abstract: The present invention relates generally to a T cell growth factor. More particularly, the present invention relates to a T cell growth factor which comprises a glycoprotein which supports interleukin 2- and interleukin 4-independent growth of helper T cells especially from murine and human sources and further which is capable of augmenting proliferation of IL3- or IL4-responsive cells. Even more particularly, the present invention relates to the helper T cell growth factor P40, pharmaceutical compositions thereof, antibodies thereto and recombinant DNA clones thereof. The present invention also contemplates a method for inducing the proliferation of helper T cells as well as IL3- and Il4-responsive cells. The helper T cells growth factor contemplated herein is useful in the stimulation of specific cells in the immune system, either alone or in combination with IL3 or IL4.
    Type: Grant
    Filed: May 23, 1995
    Date of Patent: May 12, 1998
    Assignee: Ludwig Institute for Cancer Research
    Inventors: Jacques Van Snick, Catherine Uyttenhove, Richard J. Simpson