Patents by Inventor Cathie J. Burke

Cathie J. Burke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8591008
    Abstract: A printer includes a printhead die including liquid ejectors separated by walls. Each liquid ejector includes a nozzle orifice and an associated drop forming mechanism. First and second liquid feed channels, extending in opposite directions, are in fluid communication with each liquid ejector. A liquid inlet includes a plurality of first and second segments in fluid communication with the first liquid feed channels and the second liquid feed channels, respectively. The first and second segments are located on opposite sides of the nozzle orifice. For a given liquid ejector, both of the first and second segments are directly in line with the liquid ejector. An electrical lead extends from each drop forming mechanism toward an edge of the printhead die. At least one of the electrical leads is positioned between neighboring segments of at least one of the first and second segments of the liquid inlet.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: November 26, 2013
    Assignee: Eastman Kodak Company
    Inventors: Christopher N. Delametter, John A. Lebens, David P. Trauernicht, James M. Chwalek, Yonglin Xie, Gary A. Kneezel, Christopher R. Morton, Cathie J. Burke
  • Patent number: 8567912
    Abstract: An inkjet printhead die for an inkjet print head, wherein the inkjet printhead die comprises a composite substrate that includes a planar semiconductor member, a planar substrate member and an interface at which the planar semiconductor member is fused to the planar substrate member.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: October 29, 2013
    Assignee: Eastman Kodak Company
    Inventors: John A. Lebens, Cathie J. Burke, Dino Faralli
  • Patent number: 8496318
    Abstract: A liquid ejector includes a structure defining a plurality of chambers with one of the chambers including a first and second surface. The first surface includes a nozzle orifice. A drop forming mechanism is located on the second surface of the chamber opposite the nozzle orifice. First and second liquid feed channels are in fluid communication with the chamber. First and second segments of a segmented liquid inlet are in fluid communication with the first and second liquid feed channels, respectively. The first and second segments of the segmented liquid inlet are also in fluid communication with another one of the plurality of chambers. Liquid is provided to the chamber through the first and second liquid feed channels from the segmented liquid inlet. A drop of the liquid is ejected through the nozzle orifice of the chamber by operating the drop forming mechanism.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: July 30, 2013
    Assignee: Eastman Kodak Company
    Inventors: Christopher N. Delametter, John A. Lebens, David P. Trauernicht, James M. Chwalek, Yonglin Xie, Gary A. Kneezel, Christopher R. Morton, Cathie J. Burke
  • Publication number: 20120062654
    Abstract: A printer includes a printhead die including liquid ejectors separated by walls. Each liquid ejector includes a nozzle orifice and an associated drop forming mechanism. First and second liquid feed channels, extending in opposite directions, are in fluid communication with each liquid ejector. A liquid inlet includes a plurality of first and second segments in fluid communication with the first liquid feed channels and the second liquid feed channels, respectively. The first and second segments are located on opposite sides of the nozzle orifice. For a given liquid ejector, both of the first and second segments are directly in line with the liquid ejector. An electrical lead extends from each drop forming mechanism toward an edge of the printhead die. At least one of the electrical leads is positioned between neighboring segments of at least one of the first and second segments of the liquid inlet.
    Type: Application
    Filed: November 21, 2011
    Publication date: March 15, 2012
    Inventors: Christopher N. Delametter, John A. Lebens, David P. Trauernicht, James M. Chwalek, Yonglin Xie, Gary A. Kneezel, Christopher R. Morton, Cathie J. Burke
  • Publication number: 20110267404
    Abstract: An inkjet printhead die for an inkjet print head, wherein the inkjet printhead die comprises a composite substrate that includes a planar semiconductor member, a planar substrate member and an interface at which the planar semiconductor member is fused to the planar substrate member
    Type: Application
    Filed: April 28, 2010
    Publication date: November 3, 2011
    Inventors: John A. Lebens, Cathie J. Burke, Dino Faralli
  • Publication number: 20110128316
    Abstract: A liquid ejector is provided that includes a structure defining a plurality of chambers with one of the plurality of chambers including a first surface and a second surface. The first surface includes a nozzle orifice. A drop forming mechanism is located on the second surface of the chamber opposite the nozzle orifice. A first liquid feed channel and a second liquid feed channel are in fluid communication with the chamber. A first segment of a segmented liquid inlet is in fluid communication with the first liquid feed channel and a second segment of the segmented liquid inlet is in fluid communication with the second liquid feed channel. The first segment of the segmented liquid inlet is also in fluid communication with another one of the plurality of chambers and the second segment of the liquid inlet is also in fluid communication with another one of the plurality of chambers.
    Type: Application
    Filed: November 2, 2010
    Publication date: June 2, 2011
    Inventors: Christopher N. Delametter, John A. Lebens, David P. Trauernicht, James M. Chwalek, Yonglin Xie, Gary A. Kneezel, Christopher R. Morton, Cathie J. Burke
  • Patent number: 7857422
    Abstract: A liquid ejector includes a structure defining a chamber. The chamber includes a first surface and a second surface. The first surface includes a nozzle orifice. A drop forming mechanism is located on the second surface of the chamber opposite the nozzle orifice. A first liquid feed channel and a second liquid feed channel are in fluid communication with the chamber. A first segment of a segmented liquid inlet is in fluid communication with the first liquid feed channel and a second segment of the segmented liquid inlet is in fluid communication with the second liquid feed channel.
    Type: Grant
    Filed: January 25, 2007
    Date of Patent: December 28, 2010
    Assignee: Eastman Kodak Company
    Inventors: Christopher N. Delametter, John A. Lebens, David P. Trauernicht, James M. Chwalek, Yonglin Xie, Gary A. Kneezel, Christopher R. Morton, Cathie J. Burke
  • Patent number: 7445315
    Abstract: A liquid drop ejector comprising a jet stack, thin film or thick film heaters formed on the surface of the jet stack, and at least one thin film or thick film temperature sensor operative to provide feedback temperature control for the thin film or thick film heater elements is provided. In one form, the liquid drop ejector also has the thin film or thick film heater elements grouped in segments that are operative to be individually controlled. In addition, in another form, the signal lines provided to the liquid drop ejector are patterned to allow for more uniform resistance over the span of the liquid drop ejector.
    Type: Grant
    Filed: November 15, 2004
    Date of Patent: November 4, 2008
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Michael Yu Tak Young, Steven A. Buhler, Scott Jong Ho Limb, Karl A. Littau, Beverly J. Russo, Scott E. Solberg, Michael C. Weisberg, Cathie J. Burke, Richard Schmachtenberg, Peter J. Nystrom, Sharon Berger, Timothy Trang, Thomas Long
  • Publication number: 20080180485
    Abstract: A liquid ejector includes a structure defining a chamber. The chamber includes a first surface and a second surface. The first surface includes a nozzle orifice. A drop forming mechanism is located on the second surface of the chamber opposite the nozzle orifice. A first liquid feed channel and a second liquid feed channel are in fluid communication with the chamber. A first segment of a segmented liquid inlet is in fluid communication with the first liquid feed channel and a second segment of the segmented liquid inlet is in fluid communication with the second liquid feed channel.
    Type: Application
    Filed: January 25, 2007
    Publication date: July 31, 2008
    Inventors: Christopher N. Delametter, John A. Lebens, David P. Trauernicht, James M. Chwalek, Yonglin Xie, Gary A. Kneezel, Christopher R. Morton, Cathie J. Burke
  • Publication number: 20080061163
    Abstract: A fluid dispensing device comprises one or more micromechanical fluid dispensing mechanisms arranged to dispense fluids into the atmosphere. The fluids include any of a perfume, pheromone, fragrance, disinfectant, moisturizer, humectant, miticide, fumigant, deodorizer, sanitizing agent and insecticide. A dispenser controller communicates with the fluid micromechanical dispensing mechanisms to selectively activate the fluid micromechanical dispensing mechanisms. Optionally, the fluid dispensing device includes a sensor to detect the airborne concentration of fluids that are dispersed in the atmosphere. Optionally, one or more fluid dispensing devices may be arranged to form a system, perhaps including a system sensor and a system controller.
    Type: Application
    Filed: January 8, 2007
    Publication date: March 13, 2008
    Inventors: Joel A. Kubby, Nancy Y. Jia, Edward Francis, Robert M. Duffner, Jun Ma, Cathie J. Burke, James C. Diehl
  • Patent number: 7183216
    Abstract: A thermal oxidation process is used to fill trenches with an oxide; however, the oxidation process consumes some of the silicon. The embodiments herein advantageously apply this tendency for the oxidation process to consume silicon so as to convert all the silicon substrate material between the multiple trenches into an oxide. Therefore, because all of the silicon between the multiple trenches is consumed by the oxidation process, the multiple smaller trenches are combined into a single larger trench filled with the oxide.
    Type: Grant
    Filed: May 18, 2005
    Date of Patent: February 27, 2007
    Assignee: Xerox Corporation
    Inventors: Cathie J. Burke, Peter M. Gulvin
  • Patent number: 7048361
    Abstract: A drop emitting apparatus including a diaphragm layer disposed on a fluid channel layer, a roughened bonding region formed on a surface of the diaphragm layer, a thin film circuit having conformal raised contact regions disposed on the bonding region, and a plurality of electromechanical transducers adhesively attached to the raised contact regions and electrically connected to the conformal raised contact regions by asperity contacts formed between the conformal raised contact regions and the electromechanical transducers.
    Type: Grant
    Filed: November 5, 2003
    Date of Patent: May 23, 2006
    Assignee: Xerox Corporation
    Inventors: Richard Schmachtenberg, III, John R. Andrews, Cathie J. Burke, Peter J. Nystrom
  • Patent number: 6987348
    Abstract: A system and method of operation for a piezoelectric transducer is described which utilizes a mesa structure interposed between a piezoelectric material element and a chamber diaphragm. The system can be used as a sensor where a net motion to the diaphragm causes a net charge equal to the sum of the charges on each piezoelectric diaphragm. Alternatively, the system can be used as an actuator wherein an applied voltage causes movement of the piezoelectric transducer and the chamber diaphragm.
    Type: Grant
    Filed: September 16, 2003
    Date of Patent: January 17, 2006
    Assignee: Palo Alto Research Center Inc.
    Inventors: Steven A. Buhler, Karl A. Littau, John S. Fitch, John R. Andrews, Cathie J. Burke, Peter J. Nystrom, Richard Schmachtenberg, III
  • Patent number: 6955419
    Abstract: A drop emitting apparatus including a diaphragm layer disposed on a fluid channel layer, a thin film circuit having raised contact regions disposed on the diaphragm layer, and a plurality of electromechanical transducers conductively attached to the raised contact regions.
    Type: Grant
    Filed: November 5, 2003
    Date of Patent: October 18, 2005
    Assignee: Xerox Corporation
    Inventors: John R. Andrews, Cathie J. Burke, Peter J. Nystrom, Richard Schmachtenberg, III
  • Patent number: 6905196
    Abstract: A fluid ejector includes a fluid channel having a resistive heater and terminating in a nozzle, a common bus formed transverse to the fluid channel and between the resistive heater and the nozzle, a connection line laterally adjacent to the fluid channel, and a connection structure for electrically connecting the common bus with the resistive heater and the connection line, the connection structure including a first set of one or more layers for electrical connection and a second set of one or more layers for covering the common bus and connection line. The first set of one or more layers includes a doped polysilicon layer on or overlaid by an optional tantalum-silicide layer. The second set of one or more layers includes a nitride layer on or overlaid by a tantalum layer.
    Type: Grant
    Filed: May 8, 2003
    Date of Patent: June 14, 2005
    Assignee: Xerox Corporation
    Inventors: Scott N. Seabridge, Alan D. Raisanen, Scott C. Warner, Thomas A. Tellier, Cathie J. Burke, William G. Hawkins
  • Patent number: 6790598
    Abstract: Methods of patterning resists and structures including the patterned resists are disclosed. A patterned, multi-transmissive mask is used during patterning of resists to control exposure at areas of the resist at which features having different detail are desired. Exposure is varied in more finely patterned and more grossly patterned areas of the resist. The patterned resists have a high degree of topographical uniformity.
    Type: Grant
    Filed: January 16, 2002
    Date of Patent: September 14, 2004
    Assignee: Xerox Corporation
    Inventors: Cathie J. Burke, Diane Atkinson, Mildred Calistri-Yeh
  • Publication number: 20040130243
    Abstract: A system and method of operation for a piezoelectric transducer is described which utilizes a mesa structure interposed between a piezoelectric material element and a chamber diaphragm. The system can be used as a sensor where a net motion to the diaphragm causes a net charge equal to the sum of the charges on each piezoelectric diaphragm. Alternatively, the system can be used as an actuator wherein an applied voltage causes movement of the piezoelectric transducer and the chamber diaphragm.
    Type: Application
    Filed: September 16, 2003
    Publication date: July 8, 2004
    Applicant: Palo Alto Research Center, Inc.
    Inventors: Steven A. Buhler, Karl A. Littau, John S. Fitch, John R. Andrews, Cathie J. Burke, Peter J. Nystrom, Richard Schmachtenberg
  • Publication number: 20030210301
    Abstract: A fluid ejector includes a fluid channel having a resistive heater and terminating in a nozzle, a common bus formed transverse to the fluid channel and between the resistive heater and the nozzle, a connection line laterally adjacent to the fluid channel, and a connection structure for electrically connecting the common bus with the reistive heater and the connection line, the connection structure including a first set of one or more layers for electrical connection and a second set of one or more layers for covering the common bus and connection line. The first set of one or more layers includes a doped polysilicon layer on or overlaid by an optional tantalum-silicide layer. The second set of one or more layers includes a nitride layer on or overlaid by a tantalum layer.
    Type: Application
    Filed: May 8, 2003
    Publication date: November 13, 2003
    Applicant: XEROX CORPORATION
    Inventors: Scott N. Seabridge, Alan D. Raisanen, Scott C. Warner, Thomas A. Tellier, Cathie J. Burke, William G. Hawkins
  • Publication number: 20030138741
    Abstract: Methods of patterning resists and structures including the patterned resists are disclosed. A patterned, multi-transmissive mask is used during patterning of resists to control exposure at areas of the resist at which features having different detail are desired. Exposure is varied in more finely patterned and more grossly patterned areas of the resist. The patterned resists have a high degree of topographical uniformity.
    Type: Application
    Filed: January 16, 2002
    Publication date: July 24, 2003
    Applicant: XEROX CORPORATION
    Inventors: Cathie J. Burke, Diane Atkinson, Mildred Calistri-Yeh
  • Patent number: 6596644
    Abstract: 12 Methods of forming features in polymeric materials by laser ablation techniques alone, or by the combined use of laser ablation techniques and photolithography, are disclosed. The methods can be used to pattern non-photosensitized materials, as well as photosensitized materials. The patterned features can have different shapes, dimensions and aspect ratios in the same polymer layer. Structures including the patterned features can include multiple layers formed of photosensitized and/or non-photosensitized polymer materials.
    Type: Grant
    Filed: January 16, 2002
    Date of Patent: July 22, 2003
    Assignee: Xerox Corporation
    Inventors: John R. Andrews, Cathie J. Burke, Roger G. Markham