Patents by Inventor Cathleen Ann HOEL

Cathleen Ann HOEL has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240033092
    Abstract: The present discussion relates to the design fabrication and use of synthetic scaffold structure for bone growth. In certain implementations the scaffold structures are comprised of a plurality of repeating structures each defined by a local topology. The local topologies are defined at a subset of points in their respective volumes by various parameters including, but not limited to, shape index, curvedness, mean curvature, and Gauss curvature.
    Type: Application
    Filed: July 29, 2022
    Publication date: February 1, 2024
    Inventors: Gautam Parthasarathy, Daniel J. Erno, Chitresh Bhushan, Cathleen Ann Hoel, Sara Kelly Peterson, Jessica Susanne Martinez, Brian Michael Davis, Steven Jude Duclos, Fiona Ginty
  • Publication number: 20230228199
    Abstract: A coated component including a slotted ceramic coating with a reactive phase coating disposed thereon for improved resistance to environmental contaminant compositions, along with methods of its formation, is provided. The coated component may include a substrate defining a surface, a ceramic coating disposed on the surface of the substrate, and a reactive phase coating disposed on the layer of environmental contaminant compositions. The ceramic coating includes a plurality of slots disposed in the ceramic coating forming segments of ceramic coating material.
    Type: Application
    Filed: March 9, 2023
    Publication date: July 20, 2023
    Inventors: Hrishikesh Keshavan, Byron Andrew Pritchard, Cathleen Ann Hoel, Ambarish Jayant Kulkarni, Michael Solomon Idelchik, Bernard Patrick Bewlay
  • Patent number: 11624288
    Abstract: A coated component including a slotted ceramic coating with a reactive phase coating disposed thereon for improved resistance to environmental contaminant compositions, along with methods of its formation, is provided. The coated component may include a substrate defining a surface, a ceramic coating disposed on the surface of the substrate, and a reactive phase coating disposed on the layer of environmental contaminant compositions. The ceramic coating includes a plurality of slots disposed in the ceramic coating forming segments of ceramic coating material.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: April 11, 2023
    Assignee: General Electric Company
    Inventors: Hrishikesh Keshavan, Byron Andrew Pritchard, Cathleen Ann Hoel, Ambarish Jayant Kulkarni, Michael Solomon Idelchik, Bernard Patrick Bewlay
  • Patent number: 11578002
    Abstract: Ceramic slurries may include ceramic particles, a photoreactive-photostable hybrid binder, and a photoinitiator. The photoreactive-photostable hybrid binder may include a photoreactive organic resin component, a photoreactive siloxane component, and one or more photostable siloxane components. Methods of forming a ceramic part may include curing a portion of a ceramic slurry by exposing the portion of the ceramic slurry to light to form a green ceramic part, and partially firing the green ceramic part to form a brown ceramic part. The brown ceramic part may be sintered at or above a sintering temperature of the ceramic particles to form a ceramic part, wherein sintering includes heating the brown ceramic part to a sufficient temperature to promote reaction bonding that converts silica from the photoreactive-photostable hybrid binder into silicates that bond with the ceramic particles.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: February 14, 2023
    Assignee: General Electric Company
    Inventors: Michael Joseph O'Brien, Cathleen Ann Hoel
  • Patent number: 11572313
    Abstract: Ceramic slurries may include ceramic particles, a photoreactive-photostable hybrid binder, and a photoinitiator. The photoreactive-photostable hybrid binder may include a photoreactive organic resin component, a photoreactive siloxane component, and one or more photostable siloxane components. Methods of forming a ceramic part may include curing a portion of a ceramic slurry by exposing the portion of the ceramic slurry to light to form a green ceramic part, and partially firing the green ceramic part to form a brown ceramic part. The brown ceramic part may be sintered at or above a sintering temperature of the ceramic particles to form a ceramic part, wherein sintering includes heating the brown ceramic part to a sufficient temperature to promote reaction bonding that converts silica from the photoreactive-photostable hybrid binder into silicates that bond with the ceramic particles.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: February 7, 2023
    Assignee: General Electric Company
    Inventors: Michael Joseph O'Brien, Cathleen Ann Hoel
  • Patent number: 11390563
    Abstract: A ceramic slurry for forming a ceramic article includes a binder, a first plurality of ceramic particles having a first morphology, a second plurality of ceramic particles having a second morphology that is different from the first morphology; and a photoinitiator. A method for using this slurry for fabricating ceramic articles is presented as well.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: July 19, 2022
    Assignee: General Electric Company
    Inventors: Cathleen Ann Hoel, Xi Yang, Michael Joseph O'Brien
  • Publication number: 20220032585
    Abstract: A method of making a component of an electric machine using an additive manufacturing process is disclosed. The method includes forming a first lamina of a conductive material, building a first layer of a second material on a first surface of the first lamina, treating the second material on the first surface of the first lamina to define a first insulative layer, and building on the first insulative layer a second lamina of a conductive material. The steps can be repeated iteratively until a desired thickness or number of layers is reached.
    Type: Application
    Filed: July 28, 2020
    Publication date: February 3, 2022
    Inventors: Lili Zhang, Michael Joseph O'Brien, Cathleen Ann Hoel, Min Zou, Raghavendra Adharapurapu
  • Publication number: 20210269362
    Abstract: Ceramic slurries may include ceramic particles, a photoreactive-photostable hybrid binder, and a photoinitiator. The photoreactive-photostable hybrid binder may include a photoreactive organic resin component, a photoreactive siloxane component, and one or more photostable siloxane components. Methods of forming a ceramic part may include curing a portion of a ceramic slurry by exposing the portion of the ceramic slurry to light to form a green ceramic part, and partially firing the green ceramic part to form a brown ceramic part. The brown ceramic part may be sintered at or above a sintering temperature of the ceramic particles to form a ceramic part, wherein sintering includes heating the brown ceramic part to a sufficient temperature to promote reaction bonding that converts silica from the photoreactive-photostable hybrid binder into silicates that bond with the ceramic particles.
    Type: Application
    Filed: February 27, 2020
    Publication date: September 2, 2021
    Inventors: Michael Joseph O'Brien, Cathleen Ann Hoel
  • Publication number: 20210269361
    Abstract: Ceramic slurries may include ceramic particles, a photoreactive-photostable hybrid binder, and a photoinitiator. The photoreactive-photostable hybrid binder may include a photoreactive organic resin component, a photoreactive siloxane component, and one or more photostable siloxane components. Methods of forming a ceramic part may include curing a portion of a ceramic slurry by exposing the portion of the ceramic slurry to light to form a green ceramic part, and partially firing the green ceramic part to form a brown ceramic part. The brown ceramic part may be sintered at or above a sintering temperature of the ceramic particles to form a ceramic part, wherein sintering includes heating the brown ceramic part to a sufficient temperature to promote reaction bonding that converts silica from the photoreactive-photostable hybrid binder into silicates that bond with the ceramic particles.
    Type: Application
    Filed: February 27, 2020
    Publication date: September 2, 2021
    Inventors: Michael Joseph O'Brien, Cathleen Ann Hoel
  • Patent number: 10908106
    Abstract: A coating analysis system and method inductively heat a component having a coating. Optionally, the component is heated while a cooling fluid flows through cooling holes extending through the component and the coating. The system and method measure rates of infrared radiation emission from the component and the coating at different locations on the component and the coating. The system and method determining bond qualities (e.g., tensile strengths of bonds) between the coating and the component at the different locations based on the rates of infrared radiation emission that are measured.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: February 2, 2021
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Venkata Vijayaraghava Nalladega, Roger Dale Wustman, Cathleen Ann Hoel, Margeaux Wallace
  • Patent number: 10822696
    Abstract: An article for service at high temperatures comprises a substrate comprising a first region and a second region; and a coating disposed over the substrate. The coating comprises a first portion disposed over the first region of the substrate and a second portion disposed over the second region of the substrate. The coating includes a layer comprising a ceramic material and further including a quantity of surface-connected voids, and a protective agent is disposed within at least some of the surface-connected voids of the layer. Within the first portion, the agent is present within the layer at a concentration of less than or equal to 4 percent by volume of the layer exclusive of the voids, while, within the second portion, the agent is present within the layer at a concentration up to the carrying capacity of the layer. Methods for forming the article are also presented.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: November 3, 2020
    Assignee: General Electric Company
    Inventors: Cathleen Ann Hoel, Kristen Hall Brosnan, Curtis Alan Johnson, Shankar Sivaramakrishnan
  • Publication number: 20200115284
    Abstract: A ceramic slurry for forming a ceramic article includes a binder, a first plurality of ceramic particles having a first morphology, a second plurality of ceramic particles having a second morphology that is different from the first morphology; and a photoinitiator. A method for using this slurry for fabricating ceramic articles is presented as well.
    Type: Application
    Filed: December 12, 2019
    Publication date: April 16, 2020
    Inventors: Cathleen Ann Hoel, Xi Yang, Michael Joseph O'Brien
  • Publication number: 20200033276
    Abstract: A coating analysis system and method inductively heat a component having a coating. Optionally, the component is heated while a cooling fluid flows through cooling holes extending through the component and the coating. The system and method measure rates of infrared radiation emission from the component and the coating at different locations on the component and the coating. The system and method determining bond qualities (e.g., tensile strengths of bonds) between the coating and the component at the different locations based on the rates of infrared radiation emission that are measured.
    Type: Application
    Filed: July 26, 2018
    Publication date: January 30, 2020
    Inventors: Venkata Vijayaraghava Nalladega, Roger Dale Wustman, Cathleen Ann Hoel, Margeaux Wallace
  • Patent number: 10538460
    Abstract: A ceramic slurry for forming a ceramic article includes a binder, a first plurality of ceramic particles having a first morphology, a second plurality of ceramic particles having a second morphology that is different from the first morphology; and a photoinitiator. A method for using this slurry for fabricating ceramic articles is presented as well.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: January 21, 2020
    Assignee: General Electric Company
    Inventors: Cathleen Ann Hoel, Xi Yang, Michael Joseph O'Brien
  • Patent number: 10508809
    Abstract: Embodiments of the present disclosure are directed to an article and methods of forming the article. The article includes a thermal barrier coating disposed on a substrate. The thermal barrier coating includes a thermal barrier material and partially filled surface-connected columnar voids. The partially filled surface-connected columnar voids are interspersed with the thermal barrier material in the thermal barrier coating. At least some of the partially filled surface-connected columnar voids include a calcium-magnesium-aluminum-silicon-oxide (CMAS)-reactive material disposed within, such that the CMAS-reactive material is physically separated from the substrate by a columnar cavity having an aspect ratio greater than 3.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: December 17, 2019
    Assignee: General Electric Company
    Inventors: Cathleen Ann Hoel, Kristen Hall Brosnan
  • Publication number: 20190284096
    Abstract: A ceramic slurry for forming a ceramic article includes a binder, a first plurality of ceramic particles having a first morphology, a second plurality of ceramic particles having a second morphology that is different from the first morphology; and a photoinitiator. A method for using this slurry for fabricating ceramic articles is presented as well.
    Type: Application
    Filed: March 15, 2018
    Publication date: September 19, 2019
    Inventors: Cathleen Ann Hoel, Xi Yang, Michael Joseph O'Brien
  • Publication number: 20190211696
    Abstract: A coated component including a slotted ceramic coating with a reactive phase coating disposed thereon for improved resistance to environmental contaminant compositions, along with methods of its formation, is provided. The coated component may include a substrate defining a surface, a ceramic coating disposed on the surface of the substrate, and a reactive phase coating disposed on the layer of environmental contaminant compositions. The ceramic coating includes a plurality of slots disposed in the ceramic coating forming segments of ceramic coating material.
    Type: Application
    Filed: January 9, 2018
    Publication date: July 11, 2019
    Inventors: Hrishikesh Keshavan, Byron Andrew Pritchard, Cathleen Ann Hoel, Ambarish Jayant Kulkarni, Michael Solomon Idelchik, Bernard Patrick Bewlay
  • Patent number: 10023500
    Abstract: The subject matter disclosed herein relates generally to light-curable ceramic slurries, and more specifically, to hybrid binders for light-curable ceramic slurries. A light-curable ceramic slurry includes a hybrid binder having an organic resin component and a multi-functional reactive siloxane component that is miscible with the organic resin component. The slurry also includes a photoinitiator having a corresponding photoactivation wavelength range and ceramic particles. The slurry is cured via exposure to light in the photoactivation wavelength range of the photoinitiator such that both the organic resin component and the multi-functional reactive siloxane component of the hybrid binder polymerize.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: July 17, 2018
    Assignee: General Electric Company
    Inventors: Michael Joseph O'Brien, Cathleen Ann Hoel
  • Publication number: 20180163062
    Abstract: An article for service at high temperatures comprises a substrate comprising a first region and a second region; and a coating disposed over the substrate. The coating comprises a first portion disposed over the first region of the substrate and a second portion disposed over the second region of the substrate. The coating includes a layer comprising a ceramic material and further including a quantity of surface-connected voids, and a protective agent is disposed within at least some of the surface-connected voids of the layer. Within the first portion, the agent is present within the layer at a concentration of less than or equal to 4 percent by volume of the layer exclusive of the voids, while, within the second portion, the agent is present within the layer at a concentration up to the carrying capacity of the layer. Methods for forming the article are also presented.
    Type: Application
    Filed: December 14, 2016
    Publication date: June 14, 2018
    Inventors: Cathleen Ann Hoel, Kristen Hall Brosnan, Curtis Alan Johnson, Shankar Sivaramakrishnan
  • Publication number: 20180119270
    Abstract: Embodiments of the present disclosure are directed to an article and methods of forming the article. The article includes a thermal barrier coating disposed on a substrate. The thermal barrier coating includes a thermal barrier material and partially filled surface-connected columnar voids. The partially filled surface-connected columnar voids are interspersed with the thermal barrier material in the thermal barrier coating. At least some of the partially filled surface-connected columnar voids include a calcium-magnesium-aluminum-silicon-oxide (CMAS)-reactive material disposed within, such that the CMAS-reactive material is physically separated from the substrate by a columnar cavity having an aspect ratio greater than 3.
    Type: Application
    Filed: October 31, 2016
    Publication date: May 3, 2018
    Inventors: Cathleen Ann Hoel, Kristen Hall Brosnan