Patents by Inventor Cathryn Christiansen

Cathryn Christiansen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11841296
    Abstract: A substrate is provided. The substrate includes a front region having a front surface, a back region having a back surface, an edge exclusion region, and a chamfered surface. The back surface is laterally opposite the front surface. The edge exclusion region is surrounding the front region. The chamfered surface is at least partially arranged in the edge exclusion region.
    Type: Grant
    Filed: December 2, 2021
    Date of Patent: December 12, 2023
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Marvin Montaque, Cathryn Christiansen, Katherine Niles, Timothy Kemerer
  • Publication number: 20230175995
    Abstract: A substrate is provided. The substrate includes a front region having a front surface, a back region having a back surface, an edge exclusion region, and a chamfered surface. The back surface is laterally opposite the front surface. The edge exclusion region is surrounding the front region. The chamfered surface is at least partially arranged in the edge exclusion region.
    Type: Application
    Filed: December 2, 2021
    Publication date: June 8, 2023
    Inventors: Marvin Montaque, Cathryn Christiansen, Katherine Niles, Timothy Kemerer
  • Patent number: 10297546
    Abstract: Interconnect structures for a security application and methods of forming an interconnect structure for a security application. A sacrificial masking layer is formed that includes a plurality of particles arranged with a random distribution. An etch mask is formed using the sacrificial masking layer. A hardmask is etched while masked by the etch mask to define a plurality of mask features arranged with the random distribution. A dielectric layer is etched while masked by the hardmask to form a plurality of openings in the dielectric layer that are arranged at the locations of the mask features. The openings in the dielectric layer are filled with a conductor to define a plurality of conductive features.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: May 21, 2019
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Erdem Kaltalioglu, Ronald G. Filippi, Jr., Ping-Chuan Wang, Cathryn Christiansen
  • Publication number: 20190027433
    Abstract: Interconnect structures for a security application and methods of forming an interconnect structure for a security application. A sacrificial masking layer is formed that includes a plurality of particles arranged with a random distribution. An etch mask is formed using the sacrificial masking layer. A hardmask is etched while masked by the etch mask to define a plurality of mask features arranged with the random distribution. A dielectric layer is etched while masked by the hardmask to form a plurality of openings in the dielectric layer that are arranged at the locations of the mask features. The openings in the dielectric layer are filled with a conductor to define a plurality of conductive features.
    Type: Application
    Filed: July 18, 2017
    Publication date: January 24, 2019
    Inventors: Erdem Kaltalioglu, Ronald G. Filippi, JR., Ping-Chuan Wang, Cathryn Christiansen
  • Publication number: 20060163685
    Abstract: A thermo-mechanical cleavable structure is provided and may be used as a programmable fuse for integrated circuits. As applied to a programmable fuse, the thermo-mechanical cleavable structure includes an electrically conductive cleavable layer adjacent to a thermo-mechanical stressor. As electricity is passed through the cleavable layer, the cleavable layer and the thermo-mechanical stressor are heated and gas evolves from the thermo-mechanical stressor. The gas locally insulates the thermo-mechanical stressor, causing local melting adjacent to the bubbles in the thermo-mechanical stressor and the cleavable structure forming cleaving sites. The melting also interrupts the current flow through the cleavable structure so the cleavable structure cools and contracts. The thermo-mechanical stressor also contracts due to a phase change caused by the evolution of gas therefrom. As the thermo-mechanical cleavable structure cools, the cleaving sites expand causing gaps to be permanently formed therein.
    Type: Application
    Filed: January 26, 2005
    Publication date: July 27, 2006
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Fen Chen, Cathryn Christiansen, Richard Kontra, Tom Lee, Alvin Strong, Timothy Sullivan, Joseph Therrien