Patents by Inventor Cecelia C. Yates

Cecelia C. Yates has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240325496
    Abstract: Methods of treating a disease, disorder or syndrome associated with a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (such as COVID-19) in a subject by administering one or more C-X-C chemokine receptor 3 (CXCR3) antagonist peptides are described. Diagnostic methods for enhancing replication of SARS-CoV-2 in cultured cells and/or detecting the presence of SARS-CoV-2 in cultured cells by contacting the cells with a CXCR3 agonist peptide are also described.
    Type: Application
    Filed: June 28, 2022
    Publication date: October 3, 2024
    Applicants: University of Pittsburgh - Of the Commonwealth System of Higher Education, The Trustees of Indiana University
    Inventors: Cecelia C. Yates, Monte S. Willis
  • Publication number: 20240197830
    Abstract: Interferon-?-inducible protein 10 (IP-10) peptides, IP-10 peptide variants and in silico designed C-X-C chemokine receptor 3 (CXCR3) peptide agonists are described. The small peptides can be used for inhibiting pathological tissue remodeling and treating fibrosis in a subject, such as a subject with fibrosis of the heart, lung, liver, kidney or skin. The peptide agonists can also be used to treat cardiovascular disease, including myocardial infarction and ischemia-reperfusion injury. Also described are in silico designed peptide antagonists that bind CXCR3 or ligands of CXCR3. These antagonist peptides block CXCR3 signaling by disrupting interaction of CXCR3 with its ligand. Antagonist peptides can be used, for example, to treat myocarditis and atherosclerosis. In additional embodiments agonists and antagonists of CXCR4 are disclosed.
    Type: Application
    Filed: January 23, 2024
    Publication date: June 20, 2024
    Applicants: University of Pittsburgh - Of the Commonwealth System of Higher Education, Tuskegee University, The University of North Carolina at Chapel Hill, The United States Government as represented by the Department of Veterans Affairs
    Inventors: Cecelia C. Yates-Binder, Jesse Jaynes, Monte S. Willis, Richard J. Bodnar, Zariel I. Johnson
  • Patent number: 11918625
    Abstract: Interferon-?-inducible protein 10 (IP-10) peptides, IP-10 peptide variants and in silico designed C-X-C chemokine receptor 3 (CXCR3) peptide agonists are described. The small peptides can be used for inhibiting pathological tissue remodeling and treating fibrosis in a subject, such as a subject with fibrosis of the heart, lung, liver, kidney or skin. The peptide agonists can also be used to treat cardiovascular disease, including myocardial infarction and ischemia-reperfusion injury. Also described are in silico designed peptide antagonists that bind CXCR3 or ligands of CXCR3. These antagonist peptides block CXCR3 signaling by disrupting interaction of CXCR3 with its ligand. Antagonist peptides can be used, for example, to treat myocarditis and atherosclerosis. In additional embodiments agonists and antagonists of CXCR4 are disclosed.
    Type: Grant
    Filed: April 20, 2022
    Date of Patent: March 5, 2024
    Assignees: University of Pittsburgh—Of the Commonwealth System of Higher Education, Tuskegee University
    Inventors: Cecelia C. Yates-Binder, Jesse Jaynes
  • Publication number: 20220313777
    Abstract: Administration via inhalation of small peptides that mimic CXCL10 (FIBROKINE™ peptides) is described. The peptides can be administered as an aerosol, such as an aerosol with a droplet size small enough to reach lung alveoli. Use of the peptides to treat fibrosis, such as lung fibrosis, is described.
    Type: Application
    Filed: September 10, 2020
    Publication date: October 6, 2022
    Applicants: University of Pittsburgh - Of the Commonwealth System of Higher Education, Tuskegee University
    Inventors: Cecelia C. Yates, Timothy E. Corcoran, Zariel I. Johnson, Jesse Jaynes
  • Publication number: 20220257718
    Abstract: Interferon-?-inducible protein 10 (IP-10) peptides, IP-10 peptide variants and in silico designed C—X—C chemokine receptor 3 (CXCR3) peptide agonists are described. The small peptides can be used for inhibiting pathological tissue remodeling and treating fibrosis in a subject, such as a subject with fibrosis of the heart, lung, liver, kidney or skin. The peptide agonists can also be used to treat cardiovascular disease, including myocardial infarction and ischemia-reperfusion injury. Also described are in silico designed peptide antagonists that bind CXCR3 or ligands of CXCR3. These antagonist peptides block CXCR3 signaling by disrupting interaction of CXCR3 with its ligand. Antagonist peptides can be used, for example, to treat myocarditis and atherosclerosis. In additional embodiments agonists and antagonists of CXCR4 are disclosed.
    Type: Application
    Filed: April 20, 2022
    Publication date: August 18, 2022
    Applicants: University of Pittsburgh - Of the Commonwealth System of Higher Education, Tuskegee University
    Inventors: Cecelia C. Yates-Binder, Jesse Jaynes
  • Patent number: 11406687
    Abstract: The present disclosure describes methods of treating angiogenic disorders of the eye, such as macular degeneration, restenosis following glaucoma treatment or diabetic retinopathy, by administering an activator of C-X-C chemokine receptor 3 (CXCR3). In some embodiments, the activator of CXCR3 is interferon-?-inducible 10 kDa protein (IP-10) or a fragment or variant thereof, such as a fragment comprising or consisting of the C-terminal ?-helix of IP-10. In other embodiments, the activator of CXCR3 is platelet factor 4 (PF4) or a fragment or variant thereof.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: August 9, 2022
    Assignee: University of Pittsburgh—Of the Commonwealth System of Higher Education
    Inventors: Alan H. Wells, Cecelia C. Yates-Binder, Joel S. Schuman
  • Patent number: 11338017
    Abstract: Interferon-?-inducible protein 10 (IP-10) peptides, IP-10 peptide variants and in silico designed C-X-C chemokine receptor 3 (CXCR3) peptide agonists are described. The small peptides can be used for inhibiting pathological tissue remodeling and treating fibrosis in a subject, such as a subject with fibrosis of the heart, lung, liver, kidney or skin. The peptide agonists can also be used to treat cardiovascular disease, including myocardial infarction and ischemia-reperfusion injury. Also described are in silico designed peptide antagonists that bind CXCR3 or ligands of CXCR3. These antagonist peptides block CXCR3 signaling by disrupting interaction of CXCR3 with its ligand. Antagonist peptides can be used, for example, to treat myocarditis and atherosclerosis. In additional embodiments agonists and antagonists of CXCR4 are disclosed.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: May 24, 2022
    Assignees: University of Pittsburgh—Of the Commonwealth System of Higher Education, Tuskegee University
    Inventors: Cecelia C. Yates-Binder, Jesse Jaynes
  • Publication number: 20210000919
    Abstract: The present disclosure describes methods of treating angiogenic disorders of the eye, such as macular degeneration, restenosis following glaucoma treatment or diabetic retinopathy, by administering an activator of C-X-C chemokine receptor 3 (CXCR3). In some embodiments, the activator of CXCR3 is interferon-?-inducible 10 kDa protein (IP-10) or a fragment or variant thereof, such as a fragment comprising or consisting of the C-terminal ?-helix of IP-10. In other embodiments, the activator of CXCR3 is platelet factor 4 (PF4) or a fragment or variant thereof.
    Type: Application
    Filed: September 18, 2020
    Publication date: January 7, 2021
    Applicant: University of Pittsburgh - Of the Commonwealth System of Higher Education
    Inventors: Alan H. Wells, Cecelia C. Yates-Binder, Joel S. Schuman
  • Patent number: 10561710
    Abstract: Described herein is the finding that activators of CXCR3, such as proteins that bind CXCR3 (e.g., IP-9, IP-10 and PF4), enhance the density of goblet cells in the eye. Goblet cells in the conjunctiva are the primary source of tear mucus. Accordingly, the present disclosure describes methods of treating dry eye syndrome by administering an activator of CXCR3. Also described are methods of increasing goblet cells density, such as goblet cell density in the conjunctiva.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: February 18, 2020
    Assignee: University of Pittsburgh—Of the Commonwealth System of Higher Education
    Inventors: Cecelia C. Yates-Binder, Alan H. Wells, Joel S. Schuman, Ian P. Conner
  • Publication number: 20190298802
    Abstract: Interferon-?-inducible protein 10 (IP-10) peptides, IP-10 peptide variants and in silico designed C—X—C chemokine receptor 3 (CXCR3) peptide agonists are described. The small peptides can be used for inhibiting pathological tissue remodeling and treating fibrosis in a subject, such as a subject with fibrosis of the heart, lung, liver, kidney or skin. The peptide agonists can also be used to treat cardiovascular disease, including myocardial infarction and ischemia-reperfusion injury. Also described are in silico designed peptide antagonists that bind CXCR3 or ligands of CXCR3. These antagonist peptides block CXCR3 signaling by disrupting interaction of CXCR3 with its ligand. Antagonist peptides can be used, for example, to treat myocarditis and atherosclerosis. In additional embodiments agonists and antagonists of CXCR4 are disclosed.
    Type: Application
    Filed: March 29, 2019
    Publication date: October 3, 2019
    Applicants: University of Pittsburgh - Of the Commonwealth System of Higher Education, Tuskegee University, The University of North Carolina at Chapel Hill, The United States of America as represented by the Department of Veterans Affairs
    Inventors: Cecelia C. Yates-Binder, Jesse Jaynes, Monte S. Willis, Richard J. Bodnar, Zariel I. Johnson
  • Publication number: 20180333460
    Abstract: Described herein is the finding that activators of CXCR3, such as proteins that bind CXCR3 (e.g., IP-9, IP-10 and PF4), enhance the density of goblet cells in the eye. Goblet cells in the conjunctiva are the primary source of tear mucus. Accordingly, the present disclosure describes methods of treating dry eye syndrome by administering an activator of CXCR3. Also described are methods of increasing goblet cells density, such as goblet cell density in the conjunctiva.
    Type: Application
    Filed: January 9, 2018
    Publication date: November 22, 2018
    Applicant: University of Pittsburgh - Of the Commonwealth System of Higher Education
    Inventors: Cecelia C. Yates-Binder, Alan H. Wells, Joel S. Schuman, Ian P. Conner
  • Publication number: 20180280478
    Abstract: The present disclosure describes methods of treating angiogenic disorders of the eye, such as macular degeneration, restenosis following glaucoma treatment or diabetic retinopathy, by administering an activator of C-X-C chemokine receptor 3 (CXCR3). In some embodiments, the activator of CXCR3 is interferon-?-inducible 10 kDa protein (IP-10) or a fragment or variant thereof, such as a fragment comprising or consisting of the C-terminal ?-helix of IP-10. In other embodiments, the activator of CXCR3 is platelet factor 4 (PF4) or a fragment or variant thereof.
    Type: Application
    Filed: December 19, 2017
    Publication date: October 4, 2018
    Applicant: University of Pittsburgh - Of the Commonwealth System of Higher Education
    Inventors: Alan H. Wells, Cecelia C. Yates-Binder, Joel S. Schuman
  • Patent number: 9895419
    Abstract: Described herein is the finding that activators of CXCR3, such as proteins that bind CXCR3 (e.g., IP-9, IP-10 and PF4), enhance the density of goblet cells in the eye. Goblet cells in the conjunctiva are the primary source of tear mucus. Accordingly, the present disclosure describes methods of treating dry eye syndrome by administering an activator of CXCR3. Also described are methods of increasing goblet cells density, such as goblet cell density in the conjunctiva.
    Type: Grant
    Filed: January 20, 2015
    Date of Patent: February 20, 2018
    Assignee: University of Pittsburgh—Of the Commonwealth System of Higher Education
    Inventors: Cecelia C. Yates-Binder, Alan H. Wells, Joel S. Schuman, Ian P. Conner
  • Patent number: 9872889
    Abstract: The present disclosure describes methods of treating angiogenic disorders of the eye, such as macular degeneration, restenosis following glaucoma treatment or diabetic retinopathy, by administering an activator of C-X-C chemokine receptor 3 (CXCR3). In some embodiments, the activator of CXCR3 is interferon-?-inducible 10 kDa protein (IP-10) or a fragment or variant thereof, such as a fragment comprising or consisting of the C-terminal ?-helix of IP-10. In other embodiments, the activator of CXCR3 is platelet factor 4 (PF4) or a fragment or variant thereof.
    Type: Grant
    Filed: August 24, 2016
    Date of Patent: January 23, 2018
    Assignee: University of Pittsburgh—Of the Commonwealth System of Higher Education
    Inventors: Alan H. Wells, Cecelia C. Yates-Binder, Joel S. Schuman
  • Publication number: 20170000852
    Abstract: Described herein is the finding that activators of CXCR3, such as proteins that bind CXCR3 (e.g., IP-9, IP-10 and PF4), enhance the density of goblet cells in the eye. Goblet cells in the conjunctiva are the primary source of tear mucus. Accordingly, the present disclosure describes methods of treating dry eye syndrome by administering an activator of CXCR3. Also described are methods of increasing goblet cells density, such as goblet cell density in the conjunctiva.
    Type: Application
    Filed: January 20, 2015
    Publication date: January 5, 2017
    Applicant: University of Pittsburgh - Of the Commonwealth System of Higher Education
    Inventors: Cecelia C. Yates-Binder, Alan H. Wells, Joel S. Schuman, Ian P. Conner
  • Publication number: 20160361387
    Abstract: The present disclosure describes methods of treating angiogenic disorders of the eye, such as macular degeneration, restenosis following glaucoma treatment or diabetic retinopathy, by administering an activator of C-X-C chemokine receptor 3 (CXCR3). In some embodiments, the activator of CXCR3 is interferon-?-inducible 10 kDa protein (IP-10) or a fragment or variant thereof, such as a fragment comprising or consisting of the C-terminal ?-helix of IP-10. In other embodiments, the activator of CXCR3 is platelet factor 4 (PF4) or a fragment or variant thereof.
    Type: Application
    Filed: August 24, 2016
    Publication date: December 15, 2016
    Applicant: University of Pittsburgh - Of the Commonwealth System of Higher Education
    Inventors: Alan H. Wells, Cecelia C. Yates-Binder, Joel S. Schuman
  • Patent number: 9452200
    Abstract: The present disclosure describes methods of treating angiogenic disorders of the eye, such as macular degeneration, restenosis following glaucoma treatment or diabetic retinopathy, by administering an activator of C-X-C chemokine receptor 3 (CXCR3). In some embodiments, the activator of CXCR3 is interferon-?-inducible 10 kDa protein (IP-10) or a fragment or variant thereof, such as a fragment comprising or consisting of the C-terminal ?-helix of IP-10. In other embodiments, the activator of CXCR3 is platelet factor 4 (PF4) or a fragment or variant thereof.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: September 27, 2016
    Assignee: University of Pittsburgh—Of the Commonwealth System of Higher Education
    Inventors: Alan H. Wells, Cecelia C. Yates-Binder, Joel S. Schuman
  • Publication number: 20160022779
    Abstract: The present disclosure describes methods of treating angiogenic disorders of the eye, such as macular degeneration, restenosis following glaucoma treatment or diabetic retinopathy, by administering an activator of C-X-C chemokine receptor 3 (CXCR3). In some embodiments, the activator of CXCR3 is interferon-?-inducible 10 kDa protein (IP-10) or a fragment or variant thereof, such as a fragment comprising or consisting of the C-terminal ?-helix of IP-10. In other embodiments, the activator of CXCR3 is platelet factor 4 (PF4) or a fragment or variant thereof.
    Type: Application
    Filed: October 8, 2015
    Publication date: January 28, 2016
    Applicant: University of Pittsburgh - Of the Commonwealth System of Higher Education
    Inventors: Alan H. Wells, Cecelia C. Yates-Binder, Joel S. Schuman
  • Patent number: 9180167
    Abstract: The present disclosure describes methods of treating angiogenic disorders of the eye, such as macular degeneration, restenosis following glaucoma treatment or diabetic retinopathy, by administering an activator of C-X-C chemokine receptor 3(CXCR3). In some embodiments, the activator of CXCR3 is interferon-?-inducible 10 kDa protein (IP-10), or a fragment or variant thereof, such as a fragment comprising or consisting of the C-terminal ?-helix of IP-10. In other embodiments, the activator of CXCR3 is platelet factor 4 (PF4) or a fragment or variant thereof.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: November 10, 2015
    Assignee: University of Pittsburgh-Of The Commonwealth System of Higher Education
    Inventors: Alan H. Wells, Cecelia C. Yates-Binder, Joel S. Schuman
  • Publication number: 20140178451
    Abstract: The present disclosure describes methods of treating angiogenic disorders of the eye, such as macular degeneration, restenosis following glaucoma treatment or diabetic retinopathy, by administering an activator of CXCR3. In some embodiments, the activator of CXCR3 is IP-10 or a fragment or variant thereof, such as a fragment comprising or consisting of the C-terminal ?-helix of IP-10. In other embodiments, the activator of CXCR3 is PF4 or a fragment or variant thereof.
    Type: Application
    Filed: August 23, 2012
    Publication date: June 26, 2014
    Applicant: University of Pittsburgh - Of the Commonwealth System of Higher Education
    Inventors: Alan H. Wells, Cecelia C. Yates-Binder, Joel S. Schuman