Patents by Inventor Cecile Thomazeau

Cecile Thomazeau has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10668451
    Abstract: A supported catalyst, its method of preparation and use in hydrogenation methods, which catalyst contains an oxide substrate that is for the most part calcined aluminum and an active phase that contains nickel, with the nickel content between 5 and 65% by weight in relation to the total mass of the catalyst, with the active phase not containing a metal from group VIB, the nickel particles having a diameter that is less than or equal to 20 nm, the catalyst having a median mesopore diameter of between 14 nm and 30 nm, a median macropore diameter of between 50 and 200 nm, a mesopore volume that is measured by mercury porosimetry that is greater than or equal to 0.40 mL/g, and a total pore volume that is measured by mercury porosimetry that is greater than or equal to 0.42 mL/g.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: June 2, 2020
    Assignee: IFP Energies Nouvelles
    Inventors: Malika Boualleg, Anne Claire Dubreuil, Emily Maille, Cecile Thomazeau
  • Patent number: 10618033
    Abstract: The invention relates to a supported catalyst that comprises an oxide substrate that is for the most part calcined aluminum and an active phase that comprises nickel, with the nickel content being between 5 and 65% by weight of said element in relation to the total mass of the catalyst, with said active phase not comprising a metal from group VIB, the nickel particles having a diameter that is less than or equal to 20 nm, said catalyst having a median mesopore diameter of between 8 nm and 25 nm, a median macropore diameter of greater than 200 nm, a mesopore volume that is measured by mercury porosimetry that is greater than or equal to 0.30 mL/g, and a total pore volume that is measured by mercury porosimetry that is greater than or equal to 0.34 mL/g. The invention also relates to the method for preparation of said catalyst and its use in a hydrogenation method.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: April 14, 2020
    Assignee: IFP Energies nouvelles
    Inventors: Malika Boualleg, Anne-Claire Dubreuil, Emily Maille, Cecile Thomazeau
  • Patent number: 10350580
    Abstract: A catalyst comprising a calcined oxide matrix which is mainly alumina and an active phase comprising nickel, said active phase being at least partially co-mixed within said calcined oxide matrix which is mainly alumina, the nickel content being in the range 5% to 65% by weight of said element with respect to the total mass of catalyst, said active phase not comprising any metal from group VIB, the nickel particles having a diameter of less than 15 nm, said catalyst having a median mesopore diameter in the range 12 nm to 25 nm, a median macropore diameter in the range 50 to 300 nm, a mesopore volume, measured by mercury porosimetry, of 0.40 mL/g or more and a total pore volume, measured by mercury porosimetry, of 0.45 mL/g or more. The process for the preparation of said catalyst, and its use in a hydrogenation process.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: July 16, 2019
    Assignee: IFP Energies nouvelles
    Inventors: Malika Boualleg, Anne-Claire Dubreuil, Emily Maille, Cecile Thomazeau
  • Patent number: 10307738
    Abstract: A supported catalyst having a calcined, predominantly aluminum, oxide support and an active phase of 5 to 65% by weight nickel with respect to the total mass of the catalyst, said active phase having no group VIB metal, the nickel particles having a diameter less than or equal to 20 nm, said catalyst having a mesopore median diameter greater than or equal to 14 nm, a mesopore volume measured by mercury porosimetry greater than or equal to 0.45 mL/g, a total pore volume measured by mercury porosimetry greater than or equal to 0.45 mL/g, a macropore volume less than 5% of the total pore volume, said catalyst being in the form of grains having an average diameter comprised between 0.5 and 10 mm. The invention also relates to the process for the preparation of said catalyst and the use thereof in a hydrogenation process.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: June 4, 2019
    Assignee: IFP Energies Nouvelles
    Inventors: Malika Boualleg, Anne-Claire Dubreuil, Emily Maille, Cecile Thomazeau
  • Patent number: 10258969
    Abstract: The invention concerns a catalyst comprising a calcined oxide matrix which is mainly alumina and an active phase comprising nickel, said active phase being at least partially co-mixed within said calcined oxide matrix which is mainly alumina, the nickel content being in the range 5% to 65% by weight of said element with respect to the total mass of catalyst, said active phase not comprising metal from group VIB, the nickel particles having a diameter of less than 15 nm, said catalyst having a median mesopore diameter in the range 8 nm to 25 nm, a median macropore diameter of more than 300 nm, a mesopore volume, measured by mercury porosimetry, of 0.30 mL/g or more and a total pore volume, measured by mercury porosimetry, of 0.34 mL/g or more. The invention also concerns the process for the preparation of said catalyst, and its use in a hydrogenation process.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: April 16, 2019
    Assignee: IFP Energies nouvelles
    Inventors: Malika Boualleg, Anne-Claire Dubreuil, Emily Maille, Cecile Thomazeau
  • Patent number: 10099205
    Abstract: Disclosed are a catalyst, its preparation and use in selective hydrogenation, which catalyst has a porous support grain on which are deposited palladium and silver, and at least one alkali and/or alkaline earth metal; the porous support contains a refractory silica, alumina and/or silica-alumina oxide, where at least 80 wt. % of the palladium is distributed in a crust at the periphery of the support, and at least 80 wt. % of the silver is distributed in a crust at the periphery of the support, the local content of palladium at each point along the diameter of the grain follows the same course as the local content of silver.
    Type: Grant
    Filed: December 6, 2016
    Date of Patent: October 16, 2018
    Assignee: IFP Energies Nouvelles
    Inventors: Amandine Cabiac, Vincent Zozaya, Alexandre Chambard, Cecile Thomazeau
  • Publication number: 20180207622
    Abstract: Disclosed are a supported catalyst, its method of preparation and use in hydrogenation methods, which catalyst contains an oxide substrate that is for the most part calcined aluminum and an active phase that contains nickel, with the nickel content between 5 and 65% by weight in relation to the total mass of the catalyst, with the active phase not containing a metal from group VIB, the nickel particles having a diameter that is less than or equal to 20 nm, the catalyst having a median mesopore diameter of between 14 nm and 30 nm, a median macropore diameter of between 50 and 200 nm, a mesopore volume that is measured by mercury porosimetry that is greater than or equal to 0.40 mL/g, and a total pore volume that is measured by mercury porosimetry that is greater than or equal to 0.42 mL/g.
    Type: Application
    Filed: June 9, 2015
    Publication date: July 26, 2018
    Applicant: IFP Energies Nouvelles
    Inventors: Malika BOUALLEG, Anne Claire DUBREUIL, Emily MAILLE, Cecile THOMAZEAU
  • Publication number: 20180154340
    Abstract: A catalyst comprising a calcined oxide matrix which is mainly alumina and an active phase comprising nickel, said active phase being at least partially co-mixed within said calcined oxide matrix which is mainly alumina, the nickel content being in the range 5% to 65% by weight of said element with respect to the total mass of catalyst, said active phase not comprising any metal from group VIB, the nickel particles having a diameter of less than 15 nm, said catalyst having a median mesopore diameter in the range 12 nm to 25 nm, a median macropore diameter in the range 50 to 300 nm, a mesopore volume, measured by mercury porosimetry, of 0.40 mL/g or more and a total pore volume, measured by mercury porosimetry, of 0.45 mL/g or more. The process for the preparation of said catalyst, and its use in a hydrogenation process.
    Type: Application
    Filed: June 9, 2015
    Publication date: June 7, 2018
    Applicant: IFP Energies nouvelles
    Inventors: Malika BOUALLEG, Anne-Claire DUBREUIL, Emily MAILLE, Cecile THOMAZEAU
  • Patent number: 9796935
    Abstract: The invention concerns a method for selectively hydrogenating a hydrocarbon charge containing at least two carbon atoms per molecule, having a final boiling point which is less than or equal to 250° C., and comprising at least one polyunsaturated compound, wherein the charge, in the presence of hydrogen, is brought into contact with at least one catalyst comprising a carrier and an active metal phase deposited on the carrier, the active metal phase comprising iron and at least one metal selected from zinc and copper in a molar ratio of Fe:(Zn and/or Cu) of between 0.35 and 0.99.
    Type: Grant
    Filed: September 19, 2014
    Date of Patent: October 24, 2017
    Assignee: IFP Energies Nouvelles
    Inventors: Fabien Corvaisier, Antoine Fecant, Cecile Thomazeau, Pascal Raybaud, Yves Schuurman, David Farrusseng
  • Patent number: 9783745
    Abstract: The invention relates to a method for selective hydrogenation of a hydrocarbon feedstock that contains at least 2 carbon atoms per molecule and that has a final boiling point that is less than or equal to 250° C. and that comprises at least one polyunsaturated compound, in which in the presence of hydrogen, said feedstock is brought into contact with at least one catalyst that comprises a substrate and an active metal phase deposited on said substrate; said active metal phase comprises copper and at least one metal that is selected from between nickel and cobalt in a molar ratio of Cu:(Ni and/or Co) of greater than 1.
    Type: Grant
    Filed: September 19, 2014
    Date of Patent: October 10, 2017
    Assignee: IFP ENERGIES NOUVELLES
    Inventors: Fabien Corvaisier, Antoine Fecant, Cecile Thomazeau, Pascal Raybaud, Yves Schuurman, David Farrusseng
  • Publication number: 20170259249
    Abstract: A supported catalyst having a calcined, predominantly aluminium, oxide support and an active phase of 5 to 65% by weight nickel with respect to the total mass of the catalyst, said active phase having no group VIB metal, the nickel particles having a diameter less than or equal to 20 nm, said catalyst having a mesopore median diameter greater than or equal to 14 nm, a mesopore volume measured by mercury porosimetry greater than or equal to 0.45 mL/g, a total pore volume measured by mercury porosimetry greater than or equal to 0.45 mL/g, a macropore volume less than 5% of the total pore volume, said catalyst being in the form of grains having an average diameter comprised between 0.5 and 10 mm. The invention also relates to the process for the preparation of said catalyst and the use thereof in a hydrogenation process.
    Type: Application
    Filed: August 21, 2015
    Publication date: September 14, 2017
    Applicant: IFP Energies Nouvelles
    Inventors: Malika BOUALLEG, Anne-Claire DUBREUIL, Emily MAILLE, Cecile THOMAZEAU
  • Publication number: 20170128912
    Abstract: The invention relates to a supported catalyst that comprises an oxide substrate that is for the most part calcined aluminum and an active phase that comprises nickel, with the nickel content being between 5 and 65% by weight of said element in relation to the total mass of the catalyst, with said active phase not comprising a metal from group VIB, the nickel particles having a diameter that is less than or equal to 20 nm, said catalyst having a median mesopore diameter of between 8 nm and 25 nm, a median macropore diameter of greater than 200 nm, a mesopore volume that is measured by mercury porosimetry that is greater than or equal to 0.30 mL/g, and a total pore volume that is measured by mercury porosimetry that is greater than or equal to 0.34 mL/g. The invention also relates to the method for preparation of said catalyst and its use in a hydrogenation method.
    Type: Application
    Filed: June 9, 2015
    Publication date: May 11, 2017
    Applicant: IFP Energies nouvelles
    Inventors: Malika BOUALLEG, Anne-Claire DUBREUIL, Emily MAILLE, Cecile THOMAZEAU
  • Publication number: 20170120224
    Abstract: The invention concerns a catalyst comprising a calcined oxide matrix which is mainly alumina and an active phase comprising nickel, said active phase being at least partially co-mixed within said calcined oxide matrix which is mainly alumina, the nickel content being in the range 5% to 65% by weight of said element with respect to the total mass of catalyst, said active phase not comprising metal from group VIB, the nickel particles having a diameter of less than 15 nm, said catalyst having a median mesopore diameter in the range 8 nm to 25 nm, a median macropore diameter of more than 300 nm, a mesopore volume, measured by mercury porosimetry, of 0.30 mL/g or more and a total pore volume, measured by mercury porosimetry, of 0.34 mL/g or more. The invention also concerns the process for the preparation of said catalyst, and its use in a hydrogenation process.
    Type: Application
    Filed: June 9, 2015
    Publication date: May 4, 2017
    Applicant: IFP Energies nouvelles
    Inventors: Malika BOUALLEG, Anne-Claire DUBREUIL, Emily MAILLE, Cecile THOMAZEAU
  • Publication number: 20170095797
    Abstract: Disclosed are a catalyst, its preparation and use in selective hydrogenation, which catalyst has a porous support grain on which are deposited palladium and silver, and at least one alkali and/or alkaline earth metal; the porous support contains a refractory silica, alumina and/or silica-alumina oxide, where at least 80 wt. % of the palladium is distributed in a crust at the periphery of the support, and at least 80 wt. % of the silver is distributed in a crust at the periphery of the support, the local content of palladium at each point along the diameter of the grain follows the same course as the local content of silver.
    Type: Application
    Filed: December 6, 2016
    Publication date: April 6, 2017
    Applicant: IFP Energies Nouvelles
    Inventors: Amandine CABIAC, Vincent ZOZAYA, Alexandre CHAMBARD, Cecile THOMAZEAU
  • Publication number: 20160264882
    Abstract: The invention relates to a method for selective hydrogenation of a hydrocarbon feedstock that contains at least 2 carbon atoms per molecule and that has a final boiling point that is less than or equal to 250° C. and that comprises at least one polyunsaturated compound, in which in the presence of hydrogen, said feedstock is brought into contact with at least one catalyst that comprises a substrate and an active metal phase deposited on said substrate; said active metal phase comprises copper and at least one metal that is selected from between nickel and cobalt in a molar ratio of Cu:(Ni and/or Co) of greater than 1.
    Type: Application
    Filed: September 19, 2014
    Publication date: September 15, 2016
    Applicant: IFP ENERGIES NOUVELLES
    Inventors: Fabien CORVAISIER, Antoine FECANT, Cecile THOMAZEAU, Pascal RAYBAUD, Yves SCHUURMAN, David FARRUSSENG
  • Publication number: 20160264881
    Abstract: The invention concerns a method for selectively hydrogenating a hydrocarbon charge containing at least two carbon atoms per molecule, having a final boiling point which is less than or equal to 250° C., and comprising at least one polyunsaturated compound, wherein the charge, in the presence of hydrogen, is brought into contact with at least one catalyst comprising a carrier and an active metal phase deposited on the carrier, the active metal phase comprising iron and at least one metal selected from zinc and copper in a molar ratio of Fe:(Zn and/or Cu) of between 0.35 and 0.99.
    Type: Application
    Filed: September 19, 2014
    Publication date: September 15, 2016
    Applicant: IFP Energies nouvelles
    Inventors: Fabien CORVAISIER, Antoine FECANT, Cecile THOMAZEAU, Pascal RAYBAUD, Yves SCHUURMAN, David FARRUSSENG
  • Patent number: 9328039
    Abstract: Selective hydrogenation of a polyunsaturated hydrocarbon feed containing at least 2 carbon atoms per molecule and having an end point of 250° C. or less, by contacting said feed with a catalyst having an active phase of at least one metal from group VIII deposited on a support formed by at least one oxide, said catalyst being prepared using a process involving at least: i) contacting said support with at least one solution containing at least one precursor of metal from group VIII; ii) contacting said support with at least one organic compound formed from at least one cyclic oligosaccharide composed of at least 6 ?-(1,4)-bonded glucopyranose subunits; iii) calcining to obtain metal from group VIII in oxide form; i) and ii) possibly being carried out separately, in any order, or simultaneously.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: May 3, 2016
    Assignee: IFP ENERGIES NOUVELLES
    Inventors: Fabrice Diehl, Anne Claire Dubreuil, Josselin Janvier, Cecile Thomazeau
  • Patent number: 8652232
    Abstract: A process is described for preparing cubic metallic nanoparticles, comprising: a) preparing an aqueous solution containing a source of a metal from group VIII, a reducing agent R1 and a stabilizer; b) preparing an aqueous solution containing a source of a group VIII metal and a stabilizer at a temperature strictly higher than 70° C. and less than or equal to 80° C.; c) mixing at least a portion of the aqueous solution obtained in step a) with the aqueous solution obtained in step b) to obtain, in the presence of a reducing agent R2, metallic nanoparticles in the cubic form representing at least 70% by number of the entire quantity of metallic nanoparticles which are formed; d) depositing said metallic nanoparticles derived from step c) on a support.
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: February 18, 2014
    Assignee: IFP Energies nouvelles
    Inventors: Laure Bisson, Cecile Thomazeau, Clement Sanchez, Cedric Boissiere
  • Patent number: 8637425
    Abstract: A process is described for preparing a catalyst comprising at least one porous support and at least one metallic phase containing nickel and tin in a proportion such that the Sn/Ni molar ratio is in the range 0.01 to 0.2, said process comprising at least the following steps in succession: a) depositing nickel on at least said support in order to obtain a supported nickel-based monometallic catalyst; b) reducing said monometallic catalyst in the presence of at least one reducing gas; c) depositing, in the gas phase and in the presence of at least one reducing gas, at least one organometallic tin compound onto said reduced monometallic catalyst; and d) activating the solid derived from said step c) in the presence of at least one reducing gas.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: January 28, 2014
    Assignee: IFP Energies nouvelles
    Inventors: Lars Fischer, Anne-Claire Dubreuil, Cecile Thomazeau, Layane Deghedi, Jean-Pierre Candy, Jean-Marie Basset, Fabienne Le Peltier
  • Patent number: 8637719
    Abstract: The invention concerns a catalyst comprising a porous support, palladium, at least one metal selected from the group constituted by alkalis and alkaline-earths, in which: the specific surface area of the porous support is in the range 50 to 210 m2/g; the palladium content in the catalyst is in the range 0.05% to 2% by weight; at least 80% by weight of the palladium is distributed in a crust at the periphery of the support, the thickness of said crust being in the range 20 to 200 ?m; the metallic dispersion D is in the range 25% to 70%; the density of the palladium particles in the crust is in the range 1500 to 4100 particles of palladium per ?m2; and said alkali and/or alkaline-earth metal is distributed homogeneously across the support. The invention also concerns the preparation of the catalyst and its use in selective hydrogenation.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: January 28, 2014
    Assignee: IFP Energies nouvelles
    Inventors: Lars Fischer, Carine Petit-Clair, Cecile Thomazeau, Lois Sorbier, Catherine Verdon