Patents by Inventor Cedric Cassan

Cedric Cassan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11277100
    Abstract: A multiple-stage amplifier includes a driver stage die and a final stage die. The driver stage die includes a first type of semiconductor substrate (e.g., a silicon substrate), a first transistor, and an integrated portion of an interstage impedance matching circuit. A control terminal of the first transistor is electrically coupled to an RF signal input terminal of the driver stage die, and the integrated portion of the interstage impedance matching circuit is electrically coupled between a current-carrying terminal of the first transistor and an RF signal output terminal of the driver stage die. The second die includes a III-V semiconductor substrate (e.g., a GaN substrate) and a second transistor. A connection, which is a non-integrated portion of the interstage impedance matching circuit, is electrically coupled between the RF signal output terminal of the driver stage die and an RF signal input terminal of the final stage die.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: March 15, 2022
    Assignee: NXP USA, Inc.
    Inventors: Joseph Gerard Schultz, Enver Krvavac, Olivier Lembeye, Cedric Cassan, Kevin Kim, Jeffrey Kevin Jones
  • Patent number: 11223326
    Abstract: A multiple-stage amplifier includes a driver stage die and a final stage die. The driver stage die includes a first type of semiconductor substrate (e.g., a silicon substrate), a first transistor, and an integrated portion of an interstage impedance matching circuit. A control terminal of the first transistor is electrically coupled to an RF signal input terminal of the driver stage die, and the integrated portion of the interstage impedance matching circuit is electrically coupled between a current-carrying terminal of the first transistor and an RF signal output terminal of the driver stage die. The second die includes a III-V semiconductor substrate (e.g., a GaN substrate) and a second transistor. A connection, which is a non-integrated portion of the interstage impedance matching circuit, is electrically coupled between the RF signal output terminal of the driver stage die and an RF signal input terminal of the final stage die.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: January 11, 2022
    Assignee: NXP USA, Inc.
    Inventors: Joseph Gerard Schultz, Enver Krvavac, Olivier Lembeye, Cedric Cassan, Kevin Kim, Jeffrey Kevin Jones
  • Patent number: 11050395
    Abstract: Embodiments of a device and method are disclosed. In an embodiment, an RF amplifier includes first and second RF signal paths having RF input interfaces, RF output interfaces, and corresponding transistors connected between the respective RF input interfaces and RF output interfaces, wherein control terminals of the transistors are connected to the RF input interfaces and current conducting terminals of the transistors are connected to the corresponding RF output interfaces. The RF amplifier including a conductive path between the current conducting terminal of the first transistor and the current conducting terminal of the second transistor, wherein the conductive path includes a first inductance, a second inductance, and a capacitance electrically connected between the first inductance and the second inductance.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: June 29, 2021
    Assignee: NXP USA, Inc.
    Inventors: Jeffrey Kevin Jones, Cedric Cassan, Damien Scatamacchia
  • Publication number: 20210135639
    Abstract: Embodiments of a device and method are disclosed. In an embodiment, an RF amplifier includes first and second RF signal paths having RF input interfaces, RF output interfaces, and corresponding transistors connected between the respective RF input interfaces and RF output interfaces, wherein control terminals of the transistors are connected to the RF input interfaces and current conducting terminals of the transistors are connected to the corresponding RF output interfaces. The RF amplifier including a conductive path between the current conducting terminal of the first transistor and the current conducting terminal of the second transistor, wherein the conductive path includes a first inductance, a second inductance, and a capacitance electrically connected between the first inductance and the second inductance.
    Type: Application
    Filed: December 20, 2019
    Publication date: May 6, 2021
    Inventors: Jeffrey Kevin Jones, Cedric Cassan, Damien Scatamacchia
  • Publication number: 20210013837
    Abstract: A multiple-stage amplifier includes a driver stage die and a final stage die. The driver stage die includes a first type of semiconductor substrate (e.g., a silicon substrate), a first transistor, and an integrated portion of an interstage impedance matching circuit. A control terminal of the first transistor is electrically coupled to an RF signal input terminal of the driver stage die, and the integrated portion of the interstage impedance matching circuit is electrically coupled between a current-carrying terminal of the first transistor and an RF signal output terminal of the driver stage die. The second die includes a III-V semiconductor substrate (e.g., a GaN substrate) and a second transistor. A connection, which is a non-integrated portion of the interstage impedance matching circuit, is electrically coupled between the RF signal output terminal of the driver stage die and an RF signal input terminal of the final stage die.
    Type: Application
    Filed: July 24, 2020
    Publication date: January 14, 2021
    Inventors: Joseph Gerard Schultz, Enver Krvavac, Olivier Lembeye, Cedric Cassan, Kevin Kim, Jeffrey Kevin Jones
  • Publication number: 20200389130
    Abstract: A multiple-stage amplifier includes a driver stage die and a final stage die. The driver stage die includes a first type of semiconductor substrate (e.g., a silicon substrate), a first transistor, and an integrated portion of an interstage impedance matching circuit. A control terminal of the first transistor is electrically coupled to an RF signal input terminal of the driver stage die, and the integrated portion of the interstage impedance matching circuit is electrically coupled between a current-carrying terminal of the first transistor and an RF signal output terminal of the driver stage die. The second die includes a III-V semiconductor substrate (e.g., a GaN substrate) and a second transistor. A connection, which is a non-integrated portion of the interstage impedance matching circuit, is electrically coupled between the RF signal output terminal of the driver stage die and an RF signal input terminal of the final stage die.
    Type: Application
    Filed: July 24, 2020
    Publication date: December 10, 2020
    Inventors: Joseph Gerard Schultz, Enver Krvavac, Olivier Lembeye, Cedric Cassan, Kevin Kim, Jeffrey Kevin Jones
  • Patent number: 10763792
    Abstract: A multiple-stage amplifier includes a driver stage die and a final stage die. The driver stage die includes a first type of semiconductor substrate (e.g., a silicon substrate), a first transistor, and an integrated portion of an interstage impedance matching circuit. A control terminal of the first transistor is electrically coupled to an RF signal input terminal of the driver stage die, and the integrated portion of the interstage impedance matching circuit is electrically coupled between a current-carrying terminal of the first transistor and an RF signal output terminal of the driver stage die. The second die includes a III-V semiconductor substrate (e.g., a GaN substrate) and a second transistor. A connection, which is a non-integrated portion of the interstage impedance matching circuit, is electrically coupled between the RF signal output terminal of the driver stage die and an RF signal input terminal of the final stage die.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: September 1, 2020
    Assignee: NXP USA, Inc.
    Inventors: Joseph Gerard Schultz, Enver Krvavac, Olivier Lembeye, Cedric Cassan, Kevin Kim, Jeffrey Kevin Jones
  • Publication number: 20190140598
    Abstract: A multiple-stage amplifier includes a driver stage die and a final stage die. The driver stage die includes a first type of semiconductor substrate (e.g., a silicon substrate), a first transistor, and an integrated portion of an interstage impedance matching circuit. A control terminal of the first transistor is electrically coupled to an RF signal input terminal of the driver stage die, and the integrated portion of the interstage impedance matching circuit is electrically coupled between a current-carrying terminal of the first transistor and an RF signal output terminal of the driver stage die. The second die includes a III-V semiconductor substrate (e.g., a GaN substrate) and a second transistor. A connection, which is a non-integrated portion of the interstage impedance matching circuit, is electrically coupled between the RF signal output terminal of the driver stage die and an RF signal input terminal of the final stage die.
    Type: Application
    Filed: October 26, 2018
    Publication date: May 9, 2019
    Inventors: Joseph Gerard SCHULTZ, Enver KRVAVAC, Olivier LEMBEYE, Cedric CASSAN, Kevin KIM, Jeffrey Kevin JONES
  • Patent number: 9515623
    Abstract: An embodiment of an amplifier includes N (N>1) switch-mode power amplifier (SMPA) branches. Each SMPA branch includes two drive signal inputs and one SMPA branch output. A module coupled to the amplifier samples an input RF signal, and produces combinations of drive signals based on the samples. When an SMPA branch receives a first combination of drive signals, it produces an output signal at a first voltage level. Conversely, when the SMPA branch receives a different second combination of drive signals, it produces the output signal at a different second voltage level. Finally, when the SMPA branch receives a different third combination of drive signals, it produces the output signal at a voltage level of substantially zero. A combiner combines the output signals from all of the SMPA branches to produce a combined output signal that may have, at any given time, one of 2*N+1 quantization states.
    Type: Grant
    Filed: December 3, 2014
    Date of Patent: December 6, 2016
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Jean-Christophe Nanan, Jean-Jacques Bouny, Cedric Cassan, Joseph Staudinger, Hugues Beaulaton
  • Publication number: 20150155840
    Abstract: An embodiment of an amplifier includes N (N>1) switch-mode power amplifier (SMPA) branches. Each SMPA branch includes two drive signal inputs and one SMPA branch output. A module coupled to the amplifier samples an input RF signal, and produces combinations of drive signals based on the samples. When an SMPA branch receives a first combination of drive signals, it produces an output signal at a first voltage level. Conversely, when the SMPA branch receives a different second combination of drive signals, it produces the output signal at a different second voltage level. Finally, when the SMPA branch receives a different third combination of drive signals, it produces the output signal at a voltage level of substantially zero. A combiner combines the output signals from all of the SMPA branches to produce a combined output signal that may have, at any given time, one of 2*N+1 quantization states.
    Type: Application
    Filed: December 3, 2014
    Publication date: June 4, 2015
    Inventors: JEAN-CHRISTOPHE NANAN, JEAN-JACQUES BOUNY, CEDRIC CASSAN, JOSEPH STAUDINGER, HUGUES BEAULATON
  • Patent number: 8369053
    Abstract: A protection circuit apparatus comprises an electrostatic discharge circuit coupled to an isolation filter. The isolation filter comprises an inductor coupled to a ground-coupled capacitor, the inductor and the capacitor being coupled to the electrostatic discharge circuit. The inductor is also coupled to an electrostatic discharge sensitive device to be protected from an electrostatic discharge event.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: February 5, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Xavier Moronval, Cedric Cassan, Jeffrey Jones, Olivier Lembeye
  • Publication number: 20110038087
    Abstract: A protection circuit apparatus comprises an electrostatic discharge circuit coupled to an isolation filter. The isolation filter comprises an inductor coupled to a ground-coupled capacitor, the inductor and the capacitor being coupled to the electrostatic discharge circuit. The inductor is also coupled to an electrostatic discharge sensitive device to be protected from an electrostatic discharge event.
    Type: Application
    Filed: March 31, 2006
    Publication date: February 17, 2011
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Xavier Moronval, Cedric Cassan, Jeffrey Jones, Olivier Lembeye