Patents by Inventor Cedric F. Lam

Cedric F. Lam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240039636
    Abstract: Systems and methods are disclosed for two-dimensional optical transmission, including systems and methods for modulating and detecting two-dimensional short-reach optical communications. Two-dimensional optical transmissions may be generated by mapping a first data set to a first dimension of an optical signal and mapping a second data set to a second dimension of an optical signal. The encoded data for the first data set may be combined with the encoded data for the second data set so as to produce drive signals for a dual-drive modulator using a combination of both a common-mode and differential signal. The disclosed systems and methods also include dual-mode optical receivers that are configured to operate in either a one-dimensional or two-dimensional mode.
    Type: Application
    Filed: July 27, 2022
    Publication date: February 1, 2024
    Inventors: Xiang Zhou, Cedric F. Lam, Hong Liu
  • Publication number: 20230283380
    Abstract: Coherent optical communications technology for recovery of 1D and 2D formatted optical signals. For example, 1D or 2D formatted signals that travel through fiber optic media may be recovered by separating the light into X- and Y-polarization components, rotating one polarization component (e.g., Y-component) into the polarization space of the other component (e.g., Y-component into the X-polarization space), delaying the rotated component enough to avoid destructive interference and combining the delayed component with the undelayed component to form a folded optical signal, which may then be processed as a X-polarized signal.
    Type: Application
    Filed: May 12, 2023
    Publication date: September 7, 2023
    Inventors: Xiang Zhou, Cedric F. Lam, Ryohei Urata, Hong Liu
  • Publication number: 20230224068
    Abstract: Coherent optical communications technology for recovery of 1D and 2D formatted optical signals. For example, 1D or 2D formatted signals that travel through fiber optic media may be recovered by separating the light into X- and Y-polarization components, rotating one polarization component (e.g., Y-component) into the polarization space of the other component (e.g., Y-component into the X-polarization space), delaying the rotated component enough to avoid destructive interference and combining the delayed component with the undelayed component to form a folded optical signal, which may then be processed as a X-polarized signal.
    Type: Application
    Filed: March 22, 2023
    Publication date: July 13, 2023
    Inventors: Xiang Zhou, Cedric F. Lam, Ryohei Urata, Hong Liu
  • Patent number: 11689292
    Abstract: Coherent optical communications technology for recovery of 1D and 2D formatted optical signals. For example, 1D or 2D formatted signals that travel through fiber optic media may be recovered by separating the light into X- and Y-polarization components, rotating one polarization component (e.g., Y-component) into the polarization space of the other component (e.g., Y-component into the X-polarization space), delaying the rotated component enough to avoid destructive interference and combining the delayed component with the undelayed component to form a folded optical signal, which may then be processed as a X-polarized signal.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: June 27, 2023
    Assignee: Google LLC
    Inventors: Xiang Zhou, Cedric F. Lam, Ryohei Urata, Hong Liu
  • Patent number: 11641248
    Abstract: Coherent optical communications technology for recovery of 1D and 2D formatted optical signals. For example, 1D or 2D formatted signals that travel through fiber optic media may be recovered by separating the light into X- and Y-polarization components, rotating one polarization component (e.g., Y-component) into the polarization space of the other component (e.g., Y-component into the X-polarization space), delaying the rotated component enough to avoid destructive interference and combining the delayed component with the undelayed component to form a folded optical signal, which may then be processed as a X-polarized signal.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: May 2, 2023
    Assignee: Google LLC
    Inventors: Xiang Zhou, Cedric F. Lam, Ryohei Urata, Hong Liu
  • Publication number: 20220278766
    Abstract: Coherent optical communications technology for recovery of 1D and 2D formatted optical signals. For example, 1D or 2D formatted signals that travel through fiber optic media may be recovered by separating the light into X- and Y-polarization components, rotating one polarization component (e.g., Y-component) into the polarization space of the other component (e.g., Y-component into the X-polarization space), delaying the rotated component enough to avoid destructive interference and combining the delayed component with the undelayed component to form a folded optical signal, which may then be processed as a X-polarized signal.
    Type: Application
    Filed: April 12, 2021
    Publication date: September 1, 2022
    Inventors: Xiang Zhou, Cedric F. Lam, Ryohei Urata, Hong Liu
  • Publication number: 20220278752
    Abstract: Coherent optical communications technology for recovery of 1D and 2D formatted optical signals. For example, 1D or 2D formatted signals that travel through fiber optic media may be recovered by separating the light into X- and Y-polarization components, rotating one polarization component (e.g., Y-component) into the polarization space of the other component (e.g., Y-component into the X-polarization space), delaying the rotated component enough to avoid destructive interference and combining the delayed component with the undelayed component to form a folded optical signal, which may then be processed as a X-polarized signal.
    Type: Application
    Filed: April 12, 2021
    Publication date: September 1, 2022
    Inventors: Xiang Zhou, Cedric F. Lam, Ryohei Urata, Hong Liu
  • Patent number: 9240855
    Abstract: Implementations of techniques and systems are disclosed for detecting a fiber fault in a point-to-point optical access network based on optical time domain reflectometry (“OTDR”) measurements. The techniques include identifying loss of service between a central office (“CO”) and a given optical network unit (“ONU”) of a plurality of ONUs. In response to the identifying the loss of service, configuring a test signal distribution unit to optically couple an OTDR unit to a selected subset of the point-to-point fiber links which includes the given ONU. An optical test signal is launched from the OTDR unit into the selected subset of the point-to-point fiber links via the test signal distribution unit. Test signal reflections are received from each of the point-to-point fiber links within the selected subset as a reflection signature, which is analyzed to identify a location of the fiber fault.
    Type: Grant
    Filed: December 26, 2013
    Date of Patent: January 19, 2016
    Assignee: Google Inc.
    Inventors: Cedric F. Lam, James F. Kelly, Austin B. Schuh
  • Patent number: 8953942
    Abstract: A technique for providing time division multiplexing (“TDM”) and wavelength division multiplexing (“WDM”) communication services to customer premises (“CP”) over a passive optical network (“PON”) includes multiplexing a downstream TDM signal with downstream WDM signals onto a fiber trunk line coupled between a central office and a remote node (“RN”), separating the downstream WDM signals from the downstream TDM signal at the RN with a wavelength selective filter, power splitting the downstream TDM signal at the RN onto a plurality of fiber access lines as split TDM signals; and recombining each of the WDM signals with a corresponding one of the split TDM signals onto a corresponding one of the fiber access lines.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: February 10, 2015
    Assignee: Google Inc.
    Inventors: Cedric F. Lam, Ryohei Urata, Hong Liu, Yut Loy Chan
  • Patent number: 8831051
    Abstract: Techniques, devices and systems for optical communications based on wavelength division multiplexing (WDM) that use tunable multi-wavelength laser transmitter modules.
    Type: Grant
    Filed: May 3, 2013
    Date of Patent: September 9, 2014
    Assignee: Google Inc.
    Inventors: Hong Liu, Cedric F. Lam
  • Patent number: 8792788
    Abstract: Techniques, devices and systems for optical communications based on wavelength division multiplexing (WDM) that use tunable multi-wavelength laser transmitter modules.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: July 29, 2014
    Assignee: Google Inc.
    Inventors: Cedric F. Lam, Hong Liu
  • Patent number: 8781322
    Abstract: A hybrid passive optical network (“PON”) includes a time-division multiplexing (“TDM”) optical line terminal (“OLT”) and a wavelength-division multiplexing (“WDM”) OLT. The TDM OLT communicates with a first group of customer premises (“CPs”) via TDM signals while the WDM OLT communicates with a second group of CPs via WDM signals. A remote node power splitter is coupled to receive the TDM and WDM signals and broadcast both the TDM signals and the WDM signals on all of its ports facing towards the CPs. Optical filters are disposed between the remote node power splitter and the second group of CPs. Each optical filter is configured to pass a sub-group of the WDM signals while blocking other WDM signals such that each of the second group of CPs receives its own allocation of WDM signals but does not receive WDM signals allocated to other CPs of the second group of CPs.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: July 15, 2014
    Assignee: Google Inc.
    Inventors: Cedric F. Lam, Hong Liu
  • Patent number: 8693866
    Abstract: A technique for detecting a fiber fault in a WDM optical access network includes launching a test signal into a fiber trunk line linking a central office (“CO”) to a remote node (“RN”) of the WDM optical access network. The test signal is generated by an optical time domain reflectometry unit to simultaneously fault test fiber access lines linking the RN to customer premises. The test signal is separated from downstream WDM signals at the RN. The test signal is power split at the RN into a plurality of access line test signals. The access line test signals are each recombined with a corresponding one of the downstream WDM signals onto a corresponding one of the fiber access lines. Test signal reflections are received at the CO from the fiber access lines as a reflection signature and analyzed to identify a location of the fiber fault.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: April 8, 2014
    Assignee: Google Inc.
    Inventors: Cedric F. Lam, Ben W. Segura, Ryohei Urata, Hong Liu
  • Patent number: 8655167
    Abstract: Implementations of techniques and systems are disclosed for detecting a fiber fault in a point-to-point optical access network based on optical time domain reflectometry (“OTDR”) measurements. The techniques include identifying loss of service between a central office (“CO”) and a given optical network unit (“ONU”) of a plurality of ONUs. In response to the identifying the loss of service, configuring a test signal distribution unit to optically couple an OTDR unit to a selected subset of the point-to-point fiber links which includes the given ONU. An optical test signal is launched from the OTDR unit into the selected subset of the point-to-point fiber links via the test signal distribution unit. Test signal reflections are received from each of the point-to-point fiber links within the selected subset as a reflection signature, which is analyzed to identify a location of the fiber fault.
    Type: Grant
    Filed: January 5, 2011
    Date of Patent: February 18, 2014
    Assignee: Google Inc.
    Inventors: Cedric F. Lam, James F. Kelly, Austin B. Schuh
  • Publication number: 20130315599
    Abstract: Techniques, devices and systems for optical communications based on wavelength division multiplexing (WDM) that use tunable multi-wavelength laser transmitter modules.
    Type: Application
    Filed: May 24, 2013
    Publication date: November 28, 2013
    Inventors: Cedric F. Lam, Hong Liu
  • Patent number: 8588571
    Abstract: A technique for installing a fiber optic network includes preparing a physical site to install a feeder cable and a plurality of access stub lines along a plurality of customer premises that potentially may connect to the feeder cable to obtain communication services. Each of the access stub lines extends from the feeder cable towards a customer premise and each ends at a different initial termination point. There is a one-to-one correspondence between the customer premises and the access stub lines extending from the feeder cable. A demarcation device is attached to an end of each of the access stub lines at each of the initial termination points. The demarcation device includes an optical reflector that is reflective to an optical test signal for testing integrity of the feeder cable and an associated one of the access stub lines.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: November 19, 2013
    Assignee: Google Inc.
    Inventors: Cedric F. Lam, James F. Kelly
  • Patent number: 8472805
    Abstract: Techniques, devices and systems for optical communications based on wavelength division multiplexing (WDM) that use tunable multi-wavelength laser transmitter modules.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: June 25, 2013
    Assignee: Google Inc.
    Inventors: Cedric F. Lam, Hong Liu
  • Patent number: 8457165
    Abstract: Techniques, devices and systems for optical communications based on wavelength division multiplexing (WDM) that use tunable multi-wavelength laser transmitter modules.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: June 4, 2013
    Assignee: Google Inc.
    Inventors: Hong Liu, Cedric F. Lam
  • Publication number: 20130039656
    Abstract: A hybrid passive optical network (“PON”) includes a time-division multiplexing (“TDM”) optical line terminal (“OLT”) and a wavelength-division multiplexing (“WDM”) OLT. The TDM OLT communicates with a first group of customer premises (“CPs”) via TDM signals while the WDM OLT communicates with a second group of CPs via WDM signals. A remote node power splitter is coupled to receive the TDM and WDM signals and broadcast both the TDM signals and the WDM signals on all of its ports facing towards the CPs. Optical filters are disposed between the remote node power splitter and the second group of CPs. Each optical filter is configured to pass a sub-group of the WDM signals while blocking other WDM signals such that each of the second group of CPs receives its own allocation of WDM signals but does not receive WDM signals allocated to other CPs of the second group of CPs.
    Type: Application
    Filed: August 8, 2011
    Publication date: February 14, 2013
    Applicant: GOOGLE INC.
    Inventors: Cedric F. Lam, Hong Liu
  • Patent number: 8320760
    Abstract: A passive optical network couples a WDM optical line terminal (“OLT”) to WDM optical network units (“ONUs”). The WDM OLT includes an optical transmitter array with coherent transmitters to generate downstream WDM signals encoded using phase modulation, an optical receiver array with direct detection photo-detectors to receive upstream WDM signals encoded with amplitude modulation, and an optical diplexer optically coupled to the optical transmitter array and the optical receiver array. The WDM ONU includes a tunable optical transmitter having a first tunable laser source coupled to generate a selectable upstream carrier wavelength and direct amplitude modulation circuitry coupled to amplitude modulate the first tunable laser source and a tunable optical receiver having coherent detection circuitry to demodulate phase information from the downstream WDM signals and a second tunable laser source operated as a local oscillator and coupled to tune to a selectable downstream carrier wavelength.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: November 27, 2012
    Assignee: Google Inc.
    Inventors: Cedric F. Lam, Hong Liu, Ryohei Urata