Patents by Inventor Cen TAN

Cen TAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11456248
    Abstract: Etch stop layer-based approaches for via fabrication are described. In an example, an integrated circuit structure includes a plurality of conductive lines in an ILD layer, wherein each of the plurality of conductive lines has a bulk portion including a metal and has an uppermost surface including the metal and a non-metal. A hardmask layer is on the plurality of conductive lines and on an uppermost surface of the ILD layer, and includes a first hardmask component on and aligned with the uppermost surface of the plurality of conductive lines, and a second hardmask component on and aligned with regions of the uppermost surface of the ILD layer. A conductive via is in an opening in the hardmask layer and on a portion of one of the plurality of conductive lines, the portion having a composition different than the uppermost surface including the metal and the non-metal.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: September 27, 2022
    Assignee: Intel Corporation
    Inventors: Florian Gstrein, Cen Tan, Rami Hourani
  • Patent number: 11270887
    Abstract: Embodiments herein describe techniques for a semiconductor device including a Ge substrate. A passivation layer may be formed above the Ge substrate, where the passivation layer may include one or more molecular monolayers with atoms of one or more group 15 elements or group 16 elements. In addition, a low-k interlayer may be above the passivation layer, and a high-k interlayer may be above the low-k interlayer. Furthermore, a metal contact may be above the high-k interlayer. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: March 8, 2022
    Assignee: Intel Corporation
    Inventors: Patricio E. Romero, Scott B. Clendenning, Florian Gstrein, Cen Tan
  • Patent number: 11217456
    Abstract: Selective etching and controlled atomic layer etching of transition metal oxide films for device fabrication, and the resulting devices, are described. In an example, method of dry etching a film includes forming a transition metal oxide film having a latent pore-forming material therein. The method also includes removing a surface portion of the latent pore-forming material of the transition metal oxide film to form a porous region of the transition metal oxide film. The method also includes removing the porous region of the transition metal oxide film.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: January 4, 2022
    Assignee: Intel Corporation
    Inventors: James M. Blackwell, Scott B. Clendenning, Cen Tan, Marie Krysak
  • Publication number: 20210013145
    Abstract: Etch stop layer-based approaches for via fabrication are described. In an example, an integrated circuit structure includes a plurality of conductive lines in an ILD layer, wherein each of the plurality of conductive lines has a bulk portion including a metal and has an uppermost surface including the metal and a non-metal. A hardmask layer is on the plurality of conductive lines and on an uppermost surface of the ILD layer, and includes a first hardmask component on and aligned with the uppermost surface of the plurality of conductive lines, and a second hardmask component on and aligned with regions of the uppermost surface of the ILD layer. A conductive via is in an opening in the hardmask layer and on a portion of one of the plurality of conductive lines, the portion having a composition different than the uppermost surface including the metal and the non-metal.
    Type: Application
    Filed: March 28, 2018
    Publication date: January 14, 2021
    Inventors: Florian GSTREIN, Cen TAN, Rami HOURANI
  • Publication number: 20200395223
    Abstract: Selective etching and controlled atomic layer etching of transition metal oxide films for device fabrication, and the resulting devices, are described. In an example, method of dry etching a film includes forming a transition metal oxide film having a latent pore-forming material therein. The method also includes removing a surface portion of the latent pore-forming material of the transition metal oxide film to form a porous region of the transition metal oxide film. The method also includes removing the porous region of the transition metal oxide film.
    Type: Application
    Filed: March 26, 2018
    Publication date: December 17, 2020
    Inventors: James M. BLACKWELL, Scott B. CLENDENNING, Cen TAN, Marie KRYSAK
  • Publication number: 20200168462
    Abstract: Embodiments herein describe techniques for a semiconductor device including a Ge substrate. A passivation layer may be formed above the Ge substrate, where the passivation layer may include one or more molecular monolayers with atoms of one or more group 15 elements or group 16 elements. In addition, a low-k interlayer may be above the passivation layer, and a high-k interlayer may be above the low-k interlayer. Furthermore, a metal contact may be above the high-k interlayer. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: September 27, 2017
    Publication date: May 28, 2020
    Inventors: Patricio E. ROMERO, Scott B. CLENDENNING, Florian GSTREIN, Cen TAN
  • Patent number: 10591435
    Abstract: Electropolymerized polymer or copolymer films on a conducting substrate (e.g., graphene) and methods of making such films. The films may be part of multilayer structures. The films can be formed by anodic or cathodic electropolymerization of monomers. The films and structures (e.g., multilayer structures) can be used in devices such as, for example, electrochromic devices, electrical-energy storage devices, photo-voltaic devices, field-effect transistor devices, electrical devices, electronic devices, energy-generation devices, and microfluidic devices.
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: March 17, 2020
    Assignee: Cornell University
    Inventors: Sean Conte, Gabriel G. Rodriguez-Calero, Cen Tan, Kenneth Hernandez-Burgos, Hector D. Abruna, Nicole Ritzert, Daniel C. Ralph, Wan Li
  • Publication number: 20170023513
    Abstract: Electropolymerized polymer or copolymer films on a conducting substrate (e.g., graphene) and methods of making such films. The films may be part of multilayer structures. The films can be formed by anodic or cathodic electropolymerization of monomers. The films and structures (e.g., multilayer structures) can be used in devices such as, for example, electrochromic devices, electrical-energy storage devices, photo-voltaic devices, field-effect transistor devices, electrical devices, electronic devices, energy-generation devices, and microfluidic devices.
    Type: Application
    Filed: April 3, 2015
    Publication date: January 26, 2017
    Inventors: Sean CONTE, Gabriel G. RODRIGUEZ-CALERO, Cen TAN, Kenneth HERNANDEZ-BURGOS, Hector D. ABRUNA, Nicole RITZERT, Daniel C. RALPH, Wan LI