Patents by Inventor Cesare A. Bocchiola

Cesare A. Bocchiola has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230198447
    Abstract: Examples may include an apparatus including a circuit coupled between a supply line, a return line, and a terminal. The circuit may provide an oscillating signal to the terminal. The circuit may include a first switch to couple the supply line with the terminal. The circuit may also include a second switch to couple the return line with the terminal. The circuit may also include a first inductor coupled between the first switch and the terminal. The circuit may also include a second inductor coupled between the second switch and the terminal. The circuit may also include a first diode coupled between the return line and an internal node of the first switch and the first inductor. The circuit may also include a second diode coupled between the supply line and an internal node of the second switch and the second inductor. Related systems and methods are also disclosed.
    Type: Application
    Filed: July 13, 2022
    Publication date: June 22, 2023
    Inventor: Cesare Bocchiola
  • Patent number: 11659099
    Abstract: A reverse power feeding (RPF) power supply unit (PSU) for remote network distribution point unit (DPU) that is reverse powered from multiple customer premise equipments (CPEs). A plurality of power converters, each having a different primary winding and sharing a common secondary winding of a transformer at the PSU, wherein only one of the power converters is operated at a time to provide a desired output voltage.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: May 23, 2023
    Assignee: Microchip Technology Inc.
    Inventors: Renato Colombo, Cesare Bocchiola
  • Publication number: 20200348738
    Abstract: A reverse power feeding (RPF) power supply unit (PSU) for remote network distribution point unit (DPU) that is reverse powered from multiple customer premise equipments (CPEs). A plurality of power converters, each having a different primary winding and sharing a common secondary winding of a transformer at the PSU, wherein only one of the power converters is operated at a time to provide a desired output voltage.
    Type: Application
    Filed: June 19, 2019
    Publication date: November 5, 2020
    Applicant: Microchip Technology Inc.
    Inventors: Renato Colombo, Cesare Bocchiola
  • Patent number: 8817439
    Abstract: According to one disclosed embodiment, a power delivery circuit includes a switch for protection of a load in a reverse battery condition. The load is coupled in cascade with the protection switch, where the protection switch disconnects the load from the battery in the reverse battery condition. The protection switch does not include p-n junction diodes present in conventional protection switches using FETs. The protection switch utilizes, for example, a GaN HEMT, that does not include a p-n junction diode. Thus, the threat of internal conduction in the protection switch during a reverse battery condition is eliminated. The power delivery circuit also protects the load in a load dump condition.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: August 26, 2014
    Assignee: International Rectifier Corporation
    Inventors: Stefano Clemente, Cesare Bocchiola
  • Patent number: 8079825
    Abstract: A method of protecting a cylinder of a compressor comprising a piston, a linear permanent magnet (PM) having a coil and a magnet, and a sensor-less control of the PM for moving the piston in and out of the cylinder. The method including the steps of receiving a reference position of the piston from a temperature control loop; deriving a compensation voltage and a load spring effect information from a current through the coil; providing a model input voltage to a model of a mechanical structure of the compressor for predicting position of the piston, the model input voltage comprising a first voltage derived from the reference position; a compressor input voltage comprising the first voltage and the compensation voltage; and using a position control loop to recognize when the maximum compression ratio is desired and controlling the piston to achieve maximum compression ratio without causing damage to the discharge valve.
    Type: Grant
    Filed: February 20, 2007
    Date of Patent: December 20, 2011
    Assignee: International Rectifier Corporation
    Inventor: Cesare Bocchiola
  • Publication number: 20110134576
    Abstract: According to one disclosed embodiment, a power delivery circuit includes a switch for protection of a load in a reverse battery condition. The load is coupled in cascade with the protection switch, where the protection switch disconnects the load from the battery in the reverse battery condition. The protection switch does not include p-n junction diodes present in conventional protection switches using FETs. The protection switch utilizes, for example, a GaN HEMT, that does not include a p-n junction diode. Thus, the threat of internal conduction in the protection switch during a reverse battery condition is eliminated. The power delivery circuit also protects the load in a load dump condition.
    Type: Application
    Filed: December 7, 2009
    Publication date: June 9, 2011
    Applicant: INTERNATIONAL RECTIFIER CORPORATION
    Inventors: Stefano Clemente, Cesare Bocchiola
  • Patent number: 7589986
    Abstract: An integrated boost inverter circuit including at least one inverter stage having series connected high- and low-side switches having a common node. Each switch having an anti-parallel connected diode connected across the switch, which diode can be an external diode or an internal body diode of the switch; at least one inductor connectable in series between a voltage source and the node of the at least one inverter stage; a bulk capacitor connected across the at least one inverter stage; and a load being connectable to the node of the at least one inverter stage, wherein at every switching cycle, when the low-side switch of the at least one inverter stage turns-ON the respective at least one inductor is charged and when the low-side switch turns-OFF, the current in the respective at least one inductor re-circulates through the anti-parallel connected diode of the high-side switch into the bulk capacitor.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: September 15, 2009
    Assignee: International Rectifier Corporation
    Inventor: Cesare Bocchiola
  • Patent number: 7554276
    Abstract: A safety circuit for providing protection against failures that impact safety of an inverter circuit driving a Permanent Magnet Synchronous Motor (PMSM) including high and low side switches connected in a bridge and driven by a gate driver circuit during operation of the PMSM in a field weakening mode, the gate driver circuit including stages for driving the high and low side switches, the safety circuit comprising a main power supply and a back-up power supply for supplying voltage to the gate driver circuit driving the switches of the bridge of the inverter circuit, wherein if the main power supply fails to deliver adequate power to the gate driver circuit, the back-up power supply provides power to the gate driver circuit to allow the gate driver circuit to turn ON the low side switches and turn OFF the high side switches.
    Type: Grant
    Filed: September 20, 2006
    Date of Patent: June 30, 2009
    Assignee: International Rectifier Corporation
    Inventors: Giovanni Galli, Massimo Grasso, Cesare Bocchiola
  • Patent number: 7368691
    Abstract: Apparatus for providing electrical power to at least one inductor wherein the at least one inductor is disposed to inductively couple the electrical power to an electrically conductive object to heat the electrically conductive object by inducing electrical current to flow in the electrically conductive object, the apparatus comprising at least one inductor, at least one first half-bridge converter coupled across a DC bus and having an output coupled to a first terminal of the at least one inductor; and at least one second half bridge converter coupled across the DC bus and having an output coupled to a second terminal of the at least one inductor, each half bridge converter having first and second alternately conductive series connected switches connected between the DC bus, the at least one inductor being energized by alternately turning on respective ones of the first and second switches of each converter to cause current to flow from the DC bus alternatingly through the at least one inductor from the firs
    Type: Grant
    Filed: September 22, 2004
    Date of Patent: May 6, 2008
    Assignee: International Rectifier Corporation
    Inventor: Cesare Bocchiola
  • Publication number: 20070247123
    Abstract: An integrated boost inverter circuit including at least one inverter stage having series connected high- and low-side switches having a common node. Each switch having an anti-parallel connected diode connected across the switch, which diode can be an external diode or an internal body diode of the switch; at least one inductor connectable in series between a voltage source and the node of the at least one inverter stage; a bulk capacitor connected across the at least one inverter stage; and a load being connectable to the node of the at least one inverter stage, wherein at every switching cycle, when the low-side switch of the at least one inverter stage turns-ON the respective at least one inductor is charged and when the low-side switch turns-OFF, the current in the respective at least one inductor re-circulates through the anti-parallel connected diode of the high-side switch into the bulk capacitor.
    Type: Application
    Filed: April 16, 2007
    Publication date: October 25, 2007
    Applicant: INTERNATIONAL RECTIFIER CORPORATION
    Inventor: Cesare Bocchiola
  • Publication number: 20070196214
    Abstract: A method of protecting a cylinder of a compressor comprising a piston, a linear permanent magnet (PM) having a coil and a magnet, and a sensor-less control of the PM for moving the piston in and out of the cylinder. The method including the steps of receiving a reference position of the piston from a temperature control loop; deriving a compensation voltage and a load spring effect information from a current through the coil; providing a model input voltage to a model of a mechanical structure of the compressor for predicting position of the piston, the model input voltage comprising a first voltage derived from the reference position; a compressor input voltage comprising the first voltage and the compensation voltage; and using a position control loop to recognize when the maximum compression ratio is desired and controlling the piston to achieve maximum compression ratio without causing damage to the discharge valve.
    Type: Application
    Filed: February 20, 2007
    Publication date: August 23, 2007
    Inventor: Cesare Bocchiola
  • Publication number: 20070063661
    Abstract: A safety circuit for providing protection against failures that impact safety of an inverter circuit driving a Permanent Magnet Synchronous Motor (PMSM) including high and low side switches connected in a bridge and driven by a gate driver circuit during operation of the PMSM in a field weakening mode, the gate driver circuit including stages for driving the high and low side switches, the safety circuit comprising a main power supply and a back-up power supply for supplying voltage to the gate driver circuit driving the switches of the bridge of the inverter circuit, wherein if the main power supply fails to deliver adequate power to the gate driver circuit, the back-up power supply provides power to the gate driver circuit to allow the gate driver circuit to turn ON the low side switches and turn OFF the high side switches.
    Type: Application
    Filed: September 20, 2006
    Publication date: March 22, 2007
    Applicant: INTERNATIONAL RECTIFIER CORPORATION
    Inventors: Giovanni Galli, Massimo Grasso, Cesare Bocchiola
  • Patent number: 7180273
    Abstract: A power factor correction circuit for driving a switch of a boost type converter circuit having an AC line frequency input, comprising a sense circuit for sensing and comparing the output voltage of the boost type converter circuit to a reference voltage, a circuit responsive to the output of the sense circuit for providing a drive signal for driving the switch, wherein the drive signal comprises a pulsed signal comprising a pulse grouping during each half cycle of the AC line frequency comprising at least one pulse wherein the number of pulses and frequency of the pulses of the pulse grouping changes with the output of the sense circuit up to a threshold value with the pulse width of the pulses being substantially constant; and when the output of the sense circuit has reached the threshold value, the pulse width of the pulses of the pulse grouping are varied in accordance with the output of the sense circuit.
    Type: Grant
    Filed: June 6, 2005
    Date of Patent: February 20, 2007
    Assignee: International Rectifier Corporation
    Inventors: Cesare Bocchiola, Massimo Grasso, Toshio Takahashi
  • Patent number: 7078870
    Abstract: An HID ballast includes a flyback power converter with a simplified topology that permits power factor correction while supplying constant output power to drive an inverter supplying low frequency modulated power to the HID lamp. A switch is coupled in series with a transformer in the power converter to control current through the transformer to provide constant output power. The off time of the switch contributes to controlling the power factor of the ballast circuit. The transformer is operated in critical conduction mode, with an indication of zero current in the transformer used to determine the control for the switch. An output of the flyback power converter provides a feedback signal to obtain constant power output based on switching intervals applied to the switch coupled to the transformer. This simplified topology reduces part counts while providing a robust control that can be flexibly applied to a number of HID lamps.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: July 18, 2006
    Assignee: International Rectifier Corporation
    Inventor: Cesare Bocchiola
  • Publication number: 20060044854
    Abstract: A power factor correction circuit for driving a switch of a boost type converter circuit having an AC line frequency input, comprising a sense circuit for sensing and comparing the output voltage of the boost type converter circuit to a reference voltage, a circuit responsive to the output of the sense circuit for providing a drive signal for driving the switch, wherein the drive signal comprises a pulsed signal comprising a pulse grouping during each half cycle of the AC line frequency comprising at least one pulse wherein the number of pulses and frequency of the pulses of the pulse grouping changes with the output of the sense circuit up to a threshold value with the pulse width of the pulses being substantially constant; and when the output of the sense circuit has reached the threshold value, the pulse width of the pulses of the pulse grouping are varied in accordance with the output of the sense circuit.
    Type: Application
    Filed: June 6, 2005
    Publication date: March 2, 2006
    Inventors: Cesare Bocchiola, Massimo Grasso, Toshio Takahashi
  • Publication number: 20050105313
    Abstract: Apparatus for providing electrical power to at least one inductor wherein the at least one inductor is disposed to inductively couple the electrical power to an electrically conductive object to heat the electrically conductive object by inducing electrical current to flow in the electrically conductive object, the apparatus comprising at least one inductor, at least one first half-bridge converter coupled across a DC bus and having an output coupled to a first terminal of the at least one inductor; and at least one second half bridge converter coupled across the DC bus and having an output coupled to a second terminal of the at least one inductor, each half bridge converter having first and second alternately conductive series connected switches connected between the DC bus, the at least one inductor being energized by alternately turning on respective ones of the first and second switches of each converter to cause current to flow from the DC bus alternatingly through the at least one inductor from the firs
    Type: Application
    Filed: September 22, 2004
    Publication date: May 19, 2005
    Inventor: Cesare Bocchiola
  • Publication number: 20050067981
    Abstract: An HID ballast includes a flyback power converter with a simplified topology that permits power factor correction while supplying constant output power to drive an inverter supplying low frequency modulated power to the HID lamp. A switch is coupled in series with a transformer in the power converter to control current through the transformer to provide constant output power. The off time of the switch contributes to controlling the power factor of the ballast circuit. The transformer is operated in critical conduction mode, with an indication of zero current in the transformer used to determine the control for the switch. An output of the flyback power converter provides a feedback signal to obtain constant power output based on switching intervals applied to the switch coupled to the transformer. This simplified topology reduces part counts while providing a robust control that can be flexibly applied to a number of HID lamps.
    Type: Application
    Filed: September 27, 2004
    Publication date: March 31, 2005
    Inventor: Cesare Bocchiola
  • Patent number: 5646460
    Abstract: A control device for heating elements, particularly for use in household electrical appliances such as cookers, cooking hobs, ovens and the like, comprising a driven switch in series with the, a first capacitor acting as a filter in parallel with the load, a second capacitor acting as a freewheeling capacitor operationally in series with the load and with the capacitor, these two being connected in parallel, and at least one inductor means in series with the load, characterised in that: a) the driven switch is a static switch hence able to assume an open state and a closed state; b) an inductor is provided in parallel with the load, or alternatively a section of the inductor means is in parallel with the load; c) a freewheeling diode is provided connected between an intermediate point between the inductor or section and freewheeling capacitor and an intermediate point between the load and static switch, so that when the static switch is in one state the freewheeling capacitor is charged via the freewheeling d
    Type: Grant
    Filed: September 29, 1995
    Date of Patent: July 8, 1997
    Assignee: Whirlpool Europe B.V.
    Inventors: Cesare Bocchiola, Paolo Tenti, Leopoldo Rossetto, Giorgio Spiazzi
  • Patent number: 5577153
    Abstract: A control circuit for a series type dc motor. The control circuit uses a switching cell to control motor speed. The switching cell and motor receive power from a filtered dc supply. A tachometer generator produces a voltage proportional to motor speed. The speed voltage is compared to a speed reference signal voltage and the difference is proportionally integrated to develop a speed error signal voltage. The speed reference signal voltage is developed at a summing node where a current generated by the control's microcontroller is summed with a current proportional to the input ripple voltage of the control's dc supply. The microcontroller also receives a voltage proportional to the control's dc input as a reference. The speed error signal voltage is compared with the output voltage of a current sensor that is in series with the motor feeder arrangement and the comparator's output is used to reset a bistable flip flop.
    Type: Grant
    Filed: January 24, 1995
    Date of Patent: November 19, 1996
    Assignee: Whirlpool Europe B.V.
    Inventor: Cesare A. Bocchiola