Patents by Inventor Cesare Tanassi
Cesare Tanassi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11576573Abstract: A mobile communication device-based corneal topography system includes an illumination system, an imaging system, a topography processor, an image sensor, and a mobile communication device. The illumination system is configured to generate an illumination pattern reflected off a cornea of a subject. The imaging system is coupled to an image sensor to capture an image of the reflected illumination pattern. A topography processor is coupled to the image sensor to process the image of the reflected illumination pattern. The mobile communications device includes a display, the mobile communications device is operatively coupled to the image sensor. The mobile communications device includes a mobile communications device (MCD) processor. A housing at least partially encloses one or more of the illumination system, the imaging system, or the topography processor.Type: GrantFiled: January 10, 2022Date of Patent: February 14, 2023Assignee: Intelligent Dignostics LLCInventors: David A. Wallace, Philip Buscemi, Stephen D Klyce, Mark A Kahan, Paul E Glenn, John Rogers, Cesare Tanassi, David Kramer, Vrunjal Mehta
-
Patent number: 11471046Abstract: A mobile communication device-based corneal topography system includes an illumination system, an imaging system, a topography processor, an image sensor, and a mobile communication device. The illumination system is configured to generate an illumination pattern reflected off a cornea of a subject. The imaging system is coupled to an image sensor to capture an image of the reflected illumination pattern. A topography processor is coupled to the image sensor to process the image of the reflected illumination pattern. The mobile communications device includes a display, the mobile communications device is operatively coupled to the image sensor. The mobile communications device includes a mobile communications device (MCD) processor. A housing at least partially encloses one or more of the illumination system, the imaging system, or the topography processor.Type: GrantFiled: January 10, 2022Date of Patent: October 18, 2022Assignee: Intelligent Diagnostics, LLCInventors: David A. Wallace, Philip Buscemi, Stephen D Klyce, Mark A Kahan, Paul E Glenn, John Rogers, Cesare Tanassi, David Kramer, Vrunjal Mehta
-
Publication number: 20220125305Abstract: A mobile communication device-based corneal topography system includes an illumination system, an imaging system, a topography processor, an image sensor, and a mobile communication device. The illumination system is configured to generate an illumination pattern reflected off a cornea of a subject. The imaging system is coupled to an image sensor to capture an image of the reflected illumination pattern. A topography processor is coupled to the image sensor to process the image of the reflected illumination pattern. The mobile communications device includes a display, the mobile communications device is operatively coupled to the image sensor. The mobile communications device includes a mobile communications device (MCD) processor. A housing at least partially encloses one or more of the illumination system, the imaging system, or the topography processor.Type: ApplicationFiled: January 10, 2022Publication date: April 28, 2022Inventors: David A. Wallace, Philip Buscemi, Stephen D. Klyce, Mark A. Kahan, Paul E. Glenn, John Rogers, Cesare Tanassi, David Kramer, Vrunjal Mehta
-
Publication number: 20220125306Abstract: A mobile communication device-based corneal topography system includes an illumination system, an imaging system, a topography processor, an image sensor, and a mobile communication device. The illumination system is configured to generate an illumination pattern reflected off a cornea of a subject. The imaging system is coupled to an image sensor to capture an image of the reflected illumination pattern. A topography processor is coupled to the image sensor to process the image of the reflected illumination pattern. The mobile communications device includes a display, the mobile communications device is operatively coupled to the image sensor. The mobile communications device includes a mobile communications device (MCD) processor. A housing at least partially encloses one or more of the illumination system, the imaging system, or the topography processor.Type: ApplicationFiled: January 10, 2022Publication date: April 28, 2022Inventors: David A. Wallace, Philip Buscemi, Stephen D. Klyce, Mark A. Kahan, Paul E. Glenn, John Rogers, Cesare Tanassi, David Kramer, Vrunjal Mehta
-
Patent number: 11224341Abstract: A mobile communication device-based corneal topography system includes an illumination system, an imaging system, a topography processor, an image sensor, and a mobile communication device. The illumination system is configured to generate an illumination pattern reflected off a cornea of a subject. The imaging system is coupled to an image sensor to capture an image of the reflected illumination pattern. A topography processor is coupled to the image sensor to process the image of the reflected illumination pattern. The mobile communications device includes a display, the mobile communications device is operatively coupled to the image sensor. The mobile communications device includes a mobile communications device (MCD) processor. A housing at least partially encloses one or more of the illumination system, the imaging system, or the topography processor.Type: GrantFiled: August 6, 2021Date of Patent: January 18, 2022Assignee: Intelligent Diagnostics, LLCInventors: David A. Wallace, Philip Buscemi, Stephen D Klyce, Mark A Kahan, Paul E Glenn, John Rogers, Cesare Tanassi, David Kramer, Vrunjal Mehta
-
Patent number: 11219361Abstract: A mobile communication device-based corneal topography system includes an illumination system, an imaging system, a topography processor, an image sensor, and a mobile communication device. The illumination system is configured to generate an illumination pattern reflected off a cornea of a subject. The imaging system is coupled to an image sensor to capture an image of the reflected illumination pattern. A topography processor is coupled to the image sensor to process the image of the reflected illumination pattern. The mobile communications device includes a display, the mobile communications device is operatively coupled to the image sensor. The mobile communications device includes a mobile communications device (MCD) processor. A housing at least partially encloses one or more of the illumination system, the imaging system, or the topography processor.Type: GrantFiled: August 5, 2021Date of Patent: January 11, 2022Assignee: Intelligent Diagnostics LLCInventors: David A. Wallace, Philip Buscemi, Stephen D Klyce, Mark A Kahan, Paul E Glenn, John Rogers, Cesare Tanassi, David Kramer, Vrunjal Mehta
-
Patent number: 11219360Abstract: A mobile communication device-based corneal topography system includes an illumination system, an imaging system, a topography processor, an image sensor, and a mobile communication device. The illumination system is configured to generate an illumination pattern reflected off a cornea of a subject. The imaging system is coupled to an image sensor to capture an image of the reflected illumination pattern. A topography processor is coupled to the image sensor to process the image of the reflected illumination pattern. The mobile communications device includes a display, the mobile communications device is operatively coupled to the image sensor. The mobile communications device includes a mobile communications device (MCD) processor. A housing at least partially encloses one or more of the illumination system, the imaging system, or the topography processor.Type: GrantFiled: August 4, 2021Date of Patent: January 11, 2022Assignee: Intelligent Diagnostics, LLCInventors: David A. Wallace, Philip Buscemi, Stephen D Klyce, Mark A Kahan, Paul E Glenn, John Rogers, Cesare Tanassi, David Kramer, Vrunjal Mehta
-
Publication number: 20210386288Abstract: A mobile communication device-based corneal topography system includes an illumination system, an imaging system, a topography processor, an image sensor, and a mobile communication device. The illumination system is configured to generate an illumination pattern reflected off a cornea of a subject. The imaging system is coupled to an image sensor to capture an image of the reflected illumination pattern. A topography processor is coupled to the image sensor to process the image of the reflected illumination pattern. The mobile communications device includes a display, the mobile communications device is operatively coupled to the image sensor. The mobile communications device includes a mobile communications device (MCD) processor. A housing at least partially encloses one or more of the illumination system, the imaging system, or the topography processor.Type: ApplicationFiled: August 5, 2021Publication date: December 16, 2021Inventors: David A. Wallace, Philip Buscemi, Stephan D. Klyce, Mark A. Kahan, Paul E. Glenn, John Rogers, Cesare Tanassi, David Kramer, Vrunjal Mehta
-
Publication number: 20210378507Abstract: A mobile communication device-based corneal topography system includes an illumination system, an imaging system, a topography processor, an image sensor, and a mobile communication device. The illumination system is configured to generate an illumination pattern reflected off a cornea of a subject. The imaging system is coupled to an image sensor to capture an image of the reflected illumination pattern. A topography processor is coupled to the image sensor to process the image of the reflected illumination pattern. The mobile communications device includes a display, the mobile communications device is operatively coupled to the image sensor. The mobile communications device includes a mobile communications device (MCD) processor. A housing at least partially encloses one or more of the illumination system, the imaging system, or the topography processor.Type: ApplicationFiled: August 6, 2021Publication date: December 9, 2021Inventors: David A. Wallace, Philip Buscemi, Stephen D. Klyce, Mark A. Kahan, Paul E. Glenn, John Rogers, Cesare Tanassi, David Kramer, Vrunjal Mehta
-
Publication number: 20210378506Abstract: A mobile communication device-based corneal topography system includes an illumination system, an imaging system, a topography processor, an image sensor, and a mobile communication device. The illumination system is configured to generate an illumination pattern reflected off a cornea of a subject. The imaging system is coupled to an image sensor to capture an image of the reflected illumination pattern. A topography processor is coupled to the image sensor to process the image of the reflected illumination pattern. The mobile communications device includes a display, the mobile communications device is operatively coupled to the image sensor. The mobile communications device includes a mobile communications device (MCD) processor. A housing at least partially encloses one or more of the illumination system, the imaging system, or the topography processor.Type: ApplicationFiled: August 4, 2021Publication date: December 9, 2021Inventors: David A. Wallace, Philip Buscemi, Stephen D. Klyce, Mark A. Kahan, Paul E. Glenn, John Rogers, Cesare Tanassi, David Kramer, Vrunjal Mehta
-
Patent number: 11096573Abstract: A mobile communication device-based corneal topography system includes an illumination system, an imaging system, a topography processor, an image sensor, and a mobile communication device. The illumination system is configured to generate an illumination pattern reflected off a cornea of a subject. The imaging system is coupled to an image sensor to capture an image of the reflected illumination pattern. A topography processor is coupled to the image sensor to process the image of the reflected illumination pattern. The mobile communications device includes a display, the mobile communications device is operatively coupled to the image sensor. The mobile communications device includes a mobile communications device (MCD) processor. A housing at least partially encloses one or more of the illumination system, the imaging system, or the topography processor.Type: GrantFiled: April 23, 2020Date of Patent: August 24, 2021Assignee: Intelligent Diagnostics, LLCInventors: David A. Wallace, Philip Buscemi, Stephen D Klyce, Mark A Kahan, Paul E Glenn, John Rogers, Cesare Tanassi, David Kramer, Vrunjal Mehta
-
Patent number: 10034606Abstract: An optical equipment suitable for observation of an iridocorneal annular zone of an eye including: an illumination assembly, including at least one illumination electric device for illuminating the zone with a plurality of illumination optical paths for illumination light beams going to a corresponding plurality of sub-portions, an image capturing assembly, including at least one image capturing electric device for capturing images of the zone with a plurality of imaging optical paths for imaging light beams coming from a corresponding plurality of sub-portions, and a front optical assembly having a front surface located close to front surface of an eye, a rear surface located far from front surface of an eye, and including a central portion between the front and rear surfaces and a lateral portion around the central portion; the front optical assembly is stationary; all imaging optical paths pass through central portion between the front and rear surfaces.Type: GrantFiled: April 30, 2015Date of Patent: July 31, 2018Assignee: NIDEK CO., LTD.Inventors: Cesare Tanassi, Phil Buscemi, Federico Carraro, Andrea De Giusti, Mattia Minozzi, Simone Pajaro, Michele Pascolini, Nicola Codogno
-
Publication number: 20170231491Abstract: An optical equipment suitable for observation of an iridocorneal annular zone of an eye including: an illumination assembly, including at least one illumination electric device for illuminating the zone with a plurality of illumination optical paths for illumination light beams going to a corresponding plurality of sub-portions, an image capturing assembly, including at least one image capturing electric device for capturing images of the zone with a plurality of imaging optical paths for imaging light beams coming from a corresponding plurality of sub-portions, and a front optical assembly having a front surface located close to front surface of an eye, a rear surface located far from front surface of an eye, and including a central portion between the front and rear surfaces and a lateral portion around the central portion; the front optical assembly is stationary; all imaging optical paths pass through central portion between the front and rear surfaces.Type: ApplicationFiled: April 30, 2015Publication date: August 17, 2017Applicant: NIDEK CO., LTD.Inventors: Cesare TANASSI, Phil BUSCEMI, Federico CARRARO, Andrea DE GIUSTI, Mattia MINOZZI, Simone PAJARO, Michele PASCOLINI, Nicola CODOGNO
-
Patent number: 9498325Abstract: Systems and methods for designing and implanting a customized intra-ocular lens (IOL) is disclosed. In one embodiment, a system includes an eye analysis module that analyzes a patient's eye and generates biometric information relating to the eye. The system also includes eye modeling and optimization modules to generate an optimized IOL model based upon the biometric information and other inputted parameters representative of patient preferences. The system further includes a manufacturing module configured manufacture the customized IOL based on the optimized IOL model. In addition, the system can include an intra-operative real time analyzer configured to measure and display topography and aberrometry information related to a patient's eye for assisting in proper implantation of the IOL.Type: GrantFiled: March 4, 2016Date of Patent: November 22, 2016Assignee: WaveTec Vision Systems, Inc.Inventors: Stefano Salvati, Cesare Tanassi, Gianluigi Meneghini, Renato Frison, Walter Zanette
-
Patent number: 9380939Abstract: A fundus photographing apparatus includes: a photographing unit including a fundus illumination optical system to illuminate a fundus of a patient's eye and a fundus photographing optical system having a light receiving element to obtain a fundus image of the illuminated eye; and an alignment unit to position the photographing unit with the eye based on a predetermined alignment reference position. The alignment unit includes: an extracting part to extract, by image processing, an image region formed by reflection light from a portion other than the fundus from the fundus image obtained by the fundus photographing optical system; a gravity center calculating part to determine, by arithmetic processing, a gravity center position of the extracted image region; and a control part to perform alignment control of the photographing unit with the eye based on the calculated gravity center position and the alignment reference position.Type: GrantFiled: June 28, 2013Date of Patent: July 5, 2016Assignee: NIDEK CO., LTD.Inventors: Cesare Tanassi, Raffaella Bisson, Mauro Campigotto, Simone Pajaro, Ettore Cerulli
-
Publication number: 20160184093Abstract: Systems and methods for designing and implanting a customized intra-ocular lens (IOL) is disclosed. In one embodiment, a system includes an eye analysis module that analyzes a patient's eye and generates biometric information relating to the eye. The system also includes eye modeling and optimization modules to generate an optimized IOL model based upon the biometric information and other inputted parameters representative of patient preferences. The system further includes a manufacturing module configured manufacture the customized IOL based on the optimized IOL model. In addition, the system can include an intra-operative real time analyzer configured to measure and display topography and aberrometry information related to a patient's eye for assisting in proper implantation of the IOL.Type: ApplicationFiled: March 4, 2016Publication date: June 30, 2016Inventors: Stefano Salvati, Cesare Tanassi, Gianluigi Meneghini, Renato Frison, Walter Zanette
-
Publication number: 20160157817Abstract: There is provided an apparatus and method for ultrasound imaging a plurality of cross-sectional areas of a peripheral annular volume of an eye. The apparatus may include a mechanical device having a concave front surface designed to be located close to a front surface of a cornea of an eye, and a plurality of ultrasound emitting and receiving electronic devices associated with the mechanical device arranged in an annular manner so as to be distributed around the eye when the mechanical device is located close to the front surface of the cornea of the eye. The electronic devices may be directed toward a cross-sectional area of the peripheral annular volume of the eye. The mechanical device and electronic devices may be designed to be stationary with respect to the eye.Type: ApplicationFiled: December 8, 2015Publication date: June 9, 2016Applicant: NIDEK CO., LTD.Inventors: Cesare TANASSI, Raffaella BISSON, Phil BUSCEMI
-
Patent number: 9339179Abstract: A corneal confocal microscope characterized by a particular illumination system.Type: GrantFiled: September 28, 2011Date of Patent: May 17, 2016Assignee: Sifi Medtech S.R.L.Inventors: Renato Frison, Cesare Tanassi, Walter Zanette
-
Patent number: 9301677Abstract: Systems and methods for designing and implanting a customized intra-ocular lens (IOL) is disclosed. In one embodiment, a system includes an eye analysis module that analyzes a patient's eye and generates biometric information relating to the eye. The system also includes eye modeling and optimization modules to generate an optimized IOL model based upon the biometric information and other inputted parameters representative of patient preferences. The system further includes a manufacturing module configured manufacture the customized IOL based on the optimized IOL model. In addition, the system can include an intra-operative real time analyzer configured to measure and display topography and aberrometry information related to a patient's eye for assisting in proper implantation of the IOL.Type: GrantFiled: June 2, 2014Date of Patent: April 5, 2016Assignee: WaveTec Vision Systems, Inc.Inventors: Stefano Salvati, Cesare Tanassi, Gianluigi Meneghini, Renato Frison, Walter Zanette
-
Publication number: 20150092159Abstract: Systems and methods for designing and implanting a customized intra-ocular lens (IOL) is disclosed. In one embodiment, a system includes an eye analysis module that analyzes a patient's eye and generates biometric information relating to the eye. The system also includes eye modeling and optimization modules to generate an optimized IOL model based upon the biometric information and other inputted parameters representative of patient preferences. The system further includes a manufacturing module configured manufacture the customized IOL based on the optimized IOL model. In addition, the system can include an intra-operative real time analyzer configured to measure and display topography and aberrometry information related to a patient's eye for assisting in proper implantation of the IOL.Type: ApplicationFiled: June 2, 2014Publication date: April 2, 2015Applicant: WAVETEC VISION SYSTEMS, INC.Inventors: Stefano Salvati, Cesare Tanassi, Gianluigi Meneghini, Renato Frison, Walter Zanette