Patents by Inventor Cezar Morun

Cezar Morun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11666264
    Abstract: Systems, articles, and methods for surface electromyography (“EMG”) sensors that combine elements from traditional capacitive and resistive EMG sensors are described. For example, capacitive EMG sensors that are adapted to resistively couple to a user's skin are described. Resistive coupling between a sensor electrode and the user's skin is galvanically isolated from the sensor circuitry by a discrete component capacitor included downstream from the sensor electrode. The combination of a resistively coupled electrode and a discrete component capacitor provides the respective benefits of traditional resistive and capacitive (respectively) EMG sensor designs while mitigating respective drawbacks of each approach. A wearable EMG device that provides a component of a human-electronics interface and incorporates such capacitive EMG sensors is also described.
    Type: Grant
    Filed: January 5, 2021
    Date of Patent: June 6, 2023
    Assignee: META PLATFORMS TECHNOLOGIES, LLC
    Inventors: Cezar Morun, Stephen Lake
  • Patent number: 11272859
    Abstract: A system and method for determining the respiratory and other physiological status of a patient. Here, an oscillometric device is mounted on a patient's limb, and oscillometric pulse waveforms are obtained as the device's cuff deflates, thus obtaining pulse wave signals and artifact signals over multiple patient breaths. A computer processor analyzes these signals, and removes artifacts according to various algorithms. The resulting signal can be viewed as containing both an amplitude modulated envelope of pulse waves (AM signals) and a frequency modulated sequence of pulses at various time intervals (FM signals). The main harmonics of the AM and FM signals contain respiratory status data, and the system analyzes both signals. Breathing depth and even pain data may also be obtained by this method. Artifacts caused by aberrant breathing can be distinguished using non-contact microphones and suitable algorithms. The final respiratory status data is output or stored in memory.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: March 15, 2022
    Assignee: CLOUD DX, INC.
    Inventors: Vesal Badee, Sara Ross-Howe, Josh Haid, Lamiaa Amzil, Cezar Morun, Bonghun Shin
  • Patent number: 11079846
    Abstract: Systems, articles, and methods for improved capacitive electromyography (“EMG”) sensors are described. The improved capacitive EMG sensors include one or more sensor electrode(s) that is/are coated with a protective barrier formed of a material that has a relative permittivity ?r of about 10 or more. The protective barrier shields the sensor electrode(s) from moisture, sweat, skin oils, etc. while advantageously contributing to a large capacitance between the sensor electrode(s) and the user's body. In this way, the improved capacitive EMG sensors provide enhanced robustness against variations in skin and/or environmental conditions. Such improved capacitive EMG sensors are particularly well-suited for use in wearable EMG devices that may be worn by a user for an extended period of time and/or under a variety of skin and/or environmental conditions. A wearable EMG device that provides a component of a human-electronics interface and incorporates such improved capacitive EMG sensors is described.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: August 3, 2021
    Assignee: Facebook Technologies, LLC
    Inventors: Cezar Morun, Stephen Lake
  • Patent number: 11006843
    Abstract: A system and method for determining the breathing rate of a patient using only an oscillometric device as the physiological sensor. Here, the oscillometric device is mounted on a patient's limb, and oscillometric pulse waveforms are obtained as the device's cuff deflates, thus obtaining pulse wave signals and artifact signals over multiple patient breaths. A computer processor analyzes these signals, and removes artifacts according to various algorithms. The resulting signal can be viewed as containing both an amplitude modulated envelope of pulse waves (AM signals) and a frequency modulated sequence of pulses at various time intervals (FM signals). The main harmonics of the AM and FM signals both contain breathing rate data, and system accuracy can be improved by comparing the AM harmonics with the FM harmonics. The final breathing rate data, often a function of the AM and FM harmonics, is output or stored in memory.
    Type: Grant
    Filed: August 20, 2020
    Date of Patent: May 18, 2021
    Assignee: CLOUD DX, INC.
    Inventors: Vesal Badee, Sara Ross-Howe, Josh Haid, Lamiaa Amzil, Cezar Morun, Bonghun Shin
  • Patent number: 10898101
    Abstract: Systems, articles, and methods for surface electromyography (“EMG”) sensors that combine elements from traditional capacitive and resistive EMG sensors are described. For example, capacitive EMG sensors that are adapted to resistively couple to a user's skin are described. Resistive coupling between a sensor electrode and the user's skin is galvanically isolated from the sensor circuitry by a discrete component capacitor included downstream from the sensor electrode. The combination of a resistively coupled electrode and a discrete component capacitor provides the respective benefits of traditional resistive and capacitive (respectively) EMG sensor designs while mitigating respective drawbacks of each approach. A wearable EMG device that provides a component of a human-electronics interface and incorporates such capacitive EMG sensors is also described.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: January 26, 2021
    Assignee: Facebook Technologies, LLC
    Inventors: Cezar Morun, Stephen Lake
  • Publication number: 20200159322
    Abstract: Systems, articles, and methods for improved capacitive electromyography (“EMG”) sensors are described. The improved capacitive EMG sensors include one or more sensor electrode(s) that is/are coated with a protective barrier formed of a material that has a relative permittivity ?r of about 10 or more. The protective barrier shields the sensor electrode(s) from moisture, sweat, skin oils, etc. while advantageously contributing to a large capacitance between the sensor electrode(s) and the user's body. In this way, the improved capacitive EMG sensors provide enhanced robustness against variations in skin and/or environmental conditions. Such improved capacitive EMG sensors are particularly well-suited for use in wearable EMG devices that may be worn by a user for an extended period of time and/or under a variety of skin and/or environmental conditions. A wearable EMG device that provides a component of a human-electronics interface and incorporates such improved capacitive EMG sensors is described.
    Type: Application
    Filed: August 26, 2019
    Publication date: May 21, 2020
    Applicant: Facebook Technologies, LLC
    Inventors: Cezar Morun, Stephen Lake
  • Publication number: 20200125171
    Abstract: Systems, articles, and methods for improved capacitive electromyography (“EMG”) sensors are described. The improved capacitive EMG sensors include one or more sensor electrode(s) that is/are coated with a protective barrier formed of a material that has a relative permittivity ?r of about 10 or more. The protective barrier shields the sensor electrode(s) from moisture, sweat, skin oils, etc. while advantageously contributing to a large capacitance between the sensor electrode(s) and the user's body. In this way, the improved capacitive EMG sensors provide enhanced robustness against variations in skin and/or environmental conditions. Such improved capacitive EMG sensors are particularly well-suited for use in wearable EMG devices that may be worn by a user for an extended period of time and/or under a variety of skin and/or environmental conditions. A wearable EMG device that provides a component of a human-electronics interface and incorporates such improved capacitive EMG sensors is described.
    Type: Application
    Filed: June 3, 2019
    Publication date: April 23, 2020
    Inventors: Cezar Morun, Stephen Lake
  • Patent number: 10429928
    Abstract: Systems, articles, and methods for improved capacitive electromyography (“EMG”) sensors are described. The improved capacitive EMG sensors include one or more sensor electrode(s) that is/are coated with a protective barrier formed of a material that has a relative permittivity ?r of about 10 or more. The protective barrier shields the sensor electrode(s) from moisture, sweat, skin oils, etc. while advantageously contributing to a large capacitance between the sensor electrode(s) and the user's body. In this way, the improved capacitive EMG sensors provide enhanced robustness against variations in skin and/or environmental conditions. Such improved capacitive EMG sensors are particularly well-suited for use in wearable EMG devices that may be worn by a user for an extended period of time and/or under a variety of skin and/or environmental conditions. A wearable EMG device that provides a component of a human-electronics interface and incorporates such improved capacitive EMG sensors is described.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: October 1, 2019
    Assignee: CTRL-labs Corporation
    Inventors: Cezar Morun, Stephen Lake
  • Publication number: 20190274626
    Abstract: A patient monitoring device, system and method, based on a neck mounted monitoring harness configured to be capable of operating in a stand-alone mode. The neck-mounted harness is a rigid or semi-rigid U-shaped device, with its own independent processor, power source, and ECG circuitry, configured to be worn around the patient's neck with ECG electrodes, mounted on opposite ends of the U, configured to straddle opposite sides of the patient's sternum near the patient's heart. The device is also configured to interface with other devices such as patient ear worn oximeters and oscillometric blood pressure monitors. The device processor has the capability of independently operating the sensors, analyzing sensor data, and reporting results. The device is also configured to interface with various types of external computerized devices. The device can be configured to help to prepare patients for cardiac CT scans or other imaging scans, and this application is described in detail.
    Type: Application
    Filed: May 29, 2019
    Publication date: September 12, 2019
    Inventors: Sara Ross-Howe, Tarang Sheth, Lamiaa Amzil, Josh Haid, Cezar Morun, David Widman, Robert Kaul
  • Patent number: 10362958
    Abstract: Systems, articles, and methods for surface electromyography (“EMG”) sensors that combine elements from traditional capacitive and resistive EMG sensors are described. For example, capacitive EMG sensors that are adapted to resistively couple to a user's skin are described. Resistive coupling between a sensor electrode and the user's skin is galvanically isolated from the sensor circuitry by a discrete component capacitor included downstream from the sensor electrode. The combination of a resistively coupled electrode and a discrete component capacitor provides the respective benefits of traditional resistive and capacitive (respectively) EMG sensor designs while mitigating respective drawbacks of each approach. A wearable EMG device that provides a component of a human-electronics interface and incorporates such capacitive EMG sensors is also described.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: July 30, 2019
    Assignee: CTRL-labs Corporation
    Inventors: Cezar Morun, Stephen Lake
  • Publication number: 20190192037
    Abstract: Systems, articles, and methods for surface electromyography (“EMG”) sensors that combine elements from traditional capacitive and resistive EMG sensors are described. For example, capacitive EMG sensors that are adapted to resistively couple to a user's skin are described. Resistive coupling between a sensor electrode and the user's skin is galvanically isolated from the sensor circuitry by a discrete component capacitor included downstream from the sensor electrode. The combination of a resistively coupled electrode and a discrete component capacitor provides the respective benefits of traditional resistive and capacitive (respectively) EMG sensor designs while mitigating respective drawbacks of each approach. A wearable EMG device that provides a component of a human-electronics interface and incorporates such capacitive EMG sensors is also described.
    Type: Application
    Filed: March 5, 2019
    Publication date: June 27, 2019
    Inventors: Cezar Morun, Stephen Lake
  • Patent number: 10331210
    Abstract: Systems, articles, and methods for improved capacitive electromyography (“EMG”) sensors are described. The improved capacitive EMG sensors include one or more sensor electrode(s) that is/are coated with a protective barrier formed of a material that has a relative permittivity ?r of about 10 or more. The protective barrier shields the sensor electrode(s) from moisture, sweat, skin oils, etc. while advantageously contributing to a large capacitance between the sensor electrode(s) and the user's body. In this way, the improved capacitive EMG sensors provide enhanced robustness against variations in skin and/or environmental conditions. Such improved capacitive EMG sensors are particularly well-suited for use in wearable EMG devices that may be worn by a user for an extended period of time and/or under a variety of skin and/or environmental conditions. A wearable EMG device that provides a component of a human-electronics interface and incorporates such improved capacitive EMG sensors is described.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: June 25, 2019
    Assignee: North Inc.
    Inventors: Cezar Morun, Stephen Lake
  • Patent number: 10310601
    Abstract: Systems, articles, and methods for improved capacitive electromyography (“EMG”) sensors are described. The improved capacitive EMG sensors include one or more sensor electrode(s) that is/are coated with a protective barrier formed of a material that has a relative permittivity ?r of about 10 or more. The protective barrier shields the sensor electrode(s) from moisture, sweat, skin oils, etc. while advantageously contributing to a large capacitance between the sensor electrode(s) and the user's body. In this way, the improved capacitive EMG sensors provide enhanced robustness against variations in skin and/or environmental conditions. Such improved capacitive EMG sensors are particularly well-suited for use in wearable EMG devices that may be worn by a user for an extended period of time and/or under a variety of skin and/or environmental conditions. A wearable EMG device that provides a component of a human-electronics interface and incorporates such improved capacitive EMG sensors is described.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: June 4, 2019
    Assignee: North Inc.
    Inventors: Cezar Morun, Stephen Lake
  • Patent number: 10251577
    Abstract: Systems, articles, and methods for surface electromyography (“EMG”) sensors that combine elements from traditional capacitive and resistive EMG sensors are described. For example, capacitive EMG sensors that are adapted to resistively couple to a user's skin are described. Resistive coupling between a sensor electrode and the user's skin is galvanically isolated from the sensor circuitry by a discrete component capacitor included downstream from the sensor electrode. The combination of a resistively coupled electrode and a discrete component capacitor provides the respective benefits of traditional resistive and capacitive (respectively) EMG sensor designs while mitigating respective drawbacks of each approach. A wearable EMG device that provides a component of a human-electronics interface and incorporates such capacitive EMG sensors is also described.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: April 9, 2019
    Assignee: North Inc.
    Inventors: Cezar Morun, Stephen Lake
  • Publication number: 20190033967
    Abstract: Systems, articles, and methods for improved capacitive electromyography (“EMG”) sensors are described. The improved capacitive EMG sensors include one or more sensor electrode(s) that is/are coated with a protective barrier formed of a material that has a relative permittivity ?r of about 10 or more. The protective barrier shields the sensor electrode(s) from moisture, sweat, skin oils, etc. while advantageously contributing to a large capacitance between the sensor electrode(s) and the user's body. In this way, the improved capacitive EMG sensors provide enhanced robustness against variations in skin and/or environmental conditions. Such improved capacitive EMG sensors are particularly well-suited for use in wearable EMG devices that may be worn by a user for an extended period of time and/or under a variety of skin and/or environmental conditions. A wearable EMG device that provides a component of a human-electronics interface and incorporates such improved capacitive EMG sensors is described.
    Type: Application
    Filed: September 21, 2018
    Publication date: January 31, 2019
    Inventors: Cezar Morun, Stephen Lake
  • Patent number: 10188309
    Abstract: Systems, articles, and methods for surface electromyography (“EMG”) sensors that combine elements from traditional capacitive and resistive EMG sensors are described. For example, capacitive EMG sensors that are adapted to resistively couple to a user's skin are described. Resistive coupling between a sensor electrode and the user's skin is galvanically isolated from the sensor circuitry by a discrete component capacitor included downstream from the sensor electrode. The combination of a resistively coupled electrode and a discrete component capacitor provides the respective benefits of traditional resistive and capacitive (respectively) EMG sensor designs while mitigating respective drawbacks of each approach. A wearable EMG device that provides a component of a human-electronics interface and incorporates such capacitive EMG sensors is also described.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: January 29, 2019
    Assignee: NORTH INC.
    Inventors: Cezar Morun, Stephen Lake
  • Publication number: 20180344195
    Abstract: Systems, articles, and methods for surface electromyography (“EMG”) sensors that combine elements from traditional capacitive and resistive EMG sensors are described. For example, capacitive EMG sensors that are adapted to resistively couple to a user's skin are described. Resistive coupling between a sensor electrode and the user's skin is galvanically isolated from the sensor circuitry by a discrete component capacitor included downstream from the sensor electrode. The combination of a resistively coupled electrode and a discrete component capacitor provides the respective benefits of traditional resistive and capacitive (respectively) EMG sensor designs while mitigating respective drawbacks of each approach. A wearable EMG device that provides a component of a human-electronics interface and incorporates such capacitive EMG sensors is also described.
    Type: Application
    Filed: August 7, 2018
    Publication date: December 6, 2018
    Inventors: Cezar Morun, Stephen Lake
  • Publication number: 20180321746
    Abstract: Systems, articles, and methods for improved capacitive electromyography (“EMG”) sensors are described. The improved capacitive EMG sensors include one or more sensor electrode(s) that is/are coated with a protective barrier formed of a material that has a relative permittivity ?r of about 10 or more. The protective barrier shields the sensor electrode(s) from moisture, sweat, skin oils, etc. while advantageously contributing to a large capacitance between the sensor electrode(s) and the user's body. In this way, the improved capacitive EMG sensors provide enhanced robustness against variations in skin and/or environmental conditions. Such improved capacitive EMG sensors are particularly well-suited for use in wearable EMG devices that may be worn by a user for an extended period of time and/or under a variety of skin and/or environmental conditions. A wearable EMG device that provides a component of a human-electronics interface and incorporates such improved capacitive EMG sensors is described.
    Type: Application
    Filed: June 29, 2018
    Publication date: November 8, 2018
    Inventors: Cezar Morun, Stephen Lake
  • Publication number: 20180321745
    Abstract: Systems, articles, and methods for improved capacitive electromyography (“EMG”) sensors are described. The improved capacitive EMG sensors include one or more sensor electrode(s) that is/are coated with a protective barrier formed of a material that has a relative permittivity ?r of about 10 or more. The protective barrier shields the sensor electrode(s) from moisture, sweat, skin oils, etc. while advantageously contributing to a large capacitance between the sensor electrode(s) and the user's body. In this way, the improved capacitive EMG sensors provide enhanced robustness against variations in skin and/or environmental conditions. Such improved capacitive EMG sensors are particularly well-suited for use in wearable EMG devices that may be worn by a user for an extended period of time and/or under a variety of skin and/or environmental conditions. A wearable EMG device that provides a component of a human-electronics interface and incorporates such improved capacitive EMG sensors is described.
    Type: Application
    Filed: June 29, 2018
    Publication date: November 8, 2018
    Inventors: Cezar Morun, Stephen Lake
  • Patent number: 10101809
    Abstract: Systems, articles, and methods for improved capacitive electromyography (“EMG”) sensors are described. The improved capacitive EMG sensors include one or more sensor electrode(s) that is/are coated with a protective barrier formed of a material that has a relative permittivity ?r of about 10 or more. The protective barrier shields the sensor electrode(s) from moisture, sweat, skin oils, etc. while advantageously contributing to a large capacitance between the sensor electrode(s) and the user's body. In this way, the improved capacitive EMG sensors provide enhanced robustness against variations in skin and/or environmental conditions. Such improved capacitive EMG sensors are particularly well-suited for use in wearable EMG devices that may be worn by a user for an extended period of time and/or under a variety of skin and/or environmental conditions. A wearable EMG device that provides a component of a human-electronics interface and incorporates such improved capacitive EMG sensors is described.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: October 16, 2018
    Assignee: THALMIC LABS INC.
    Inventors: Cezar Morun, Stephen Lake