Patents by Inventor Chad Andresen

Chad Andresen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200009392
    Abstract: A device for providing an implantable lead with wireless energy, the device including: a housing configured for implantation in a patient's body; one or more non-inductive antennas substantially enclosed within the housing and configured to receive electromagnetic energy radiated from a source located outside of the patient's body; electronic circuitry coupled to each of the one or more non-inductive antennas and configured to extract electric power and excitation waveforms from the radiated electromagnetic energy as received by the one or more non-inductive antennas; and one or more connection pads substantially enclosed within the housing, wherein the connection pads are configured to couple with one or more electrodes in the implantable lead and form an electric connection over which the connection pads provide the extracted excitation waveforms from the electronic circuit to the electrodes in the implantable lead, the implantable lead being separate from the device.
    Type: Application
    Filed: July 22, 2019
    Publication date: January 9, 2020
    Inventors: Laura Tyler Perryman, Chad Andresen
  • Publication number: 20190381327
    Abstract: A system includes a controller module, which includes a storage device, a controller, a modulator, and one or more antennas. The storage device is stored with parameters defining a stimulation waveform. The controller is configured to generate, based on the stored parameters, an output signal that includes the stimulation waveform, wherein the output signal additionally includes polarity assignments for electrodes in an implantable, passive stimulation device. The modulator modulates a stimulus carrier signal with the output signal to generate a transmission signal.
    Type: Application
    Filed: June 3, 2019
    Publication date: December 19, 2019
    Inventors: Laura Tyler Perryman, Patrick Larson, Chad Andresen
  • Patent number: 10471262
    Abstract: An implantable neural stimulator method for modulating excitable tissue in a patient including: implanting a neural stimulator within the body of the patient such that one or more electrodes of the neural stimulator are positioned at a target site adjacent to or near excitable tissue; generating an input signal with a controller module located outside of, and spaced away from, the patient's body; transmitting the input signal to the neural stimulator through electrical radiative coupling; converting the input signal to electrical pulses within the neural stimulator; and applying the electrical pulses to the excitable tissue sufficient to modulate said excitable tissue.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: November 12, 2019
    Assignee: Stimwave Technologies Incorporated
    Inventors: Laura Tyler Perryman, Patrick Larson, Chad Andresen
  • Patent number: 10463858
    Abstract: Some implementations provide a method for treating craniofacial pain in a patient, the method including: placing a wirelessly powered passive device through an opening into a target site in a head or neck region of the patient's body, the wirelessly powered passive device configured to receive an input signal non-inductively from an external antenna; positioning the wirelessly powered passive device adjacent to or near a nerve at the target site; and causing neural modulation to the nerve through one or more electrodes on the wirelessly powered passive device.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: November 5, 2019
    Assignee: Stimwave Technologies Incorporated
    Inventors: Laura Tyler Perryman, Chad Andresen
  • Patent number: 10420947
    Abstract: A system, including: an implantable neural stimulator including electrodes, at least one antenna and an electrode interface; a radio-frequency (RF) pulse generator module comprising an antenna module configured to send an input signal to the antenna in the implantable neural stimulator through electrical radiative coupling, the input signal containing electrical energy and polarity assignment information that designates polarity assignments of the electrodes in the implantable neural stimulator; and wherein the implantable neural stimulator is configured to: control the electrode interface such that the electrodes have the polarity assignments designated by the polarity assignment information, create one or more electrical pulses suitable for modulation of neural tissue using the electrical energy contained in the input signal, and supply the electrical pulses to the electrodes through the electrode interface such that the electrodes apply the electrical pulses to the neural tissue with the polarity assignmen
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: September 24, 2019
    Assignee: Stimwave Technologies Incorporated
    Inventors: Laura Tyler Perryman, Patrick Larson, Chad Andresen
  • Publication number: 20190247660
    Abstract: An implantable wireless lead includes an enclosure, the enclosure housing: one or more electrodes configured to apply one or more electrical pulses to a neural tissue; a first antenna configured to: receive, from a second antenna and through electrical radiative coupling, an input signal containing electrical energy, the second antenna being physically separate from the implantable neural stimulator lead; one or more circuits electrically connected to the first antenna, the circuits configured to: create the one or more electrical pulses suitable for stimulation of the neural tissue using the electrical energy contained in the input signal; and supply the one or more electrical pulses to the one or more electrodes, wherein the enclosure is shaped and arranged for delivery into a subject's body through an introducer or a needle.
    Type: Application
    Filed: February 14, 2019
    Publication date: August 15, 2019
    Applicant: Stimwave Technologies Incorporated
    Inventors: Laura Tyler Perryman, Patrick Larson, Chad Andresen
  • Patent number: 10369369
    Abstract: A device for providing an implantable lead with wireless energy, the device including: a housing configured for implantation in a patient's body; one or more non-inductive antennas substantially enclosed within the housing and configured to receive electromagnetic energy radiated from a source located outside of the patient's body; electronic circuitry coupled to each of the one or more non-inductive antennas and configured to extract electric power and excitation waveforms from the radiated electromagnetic energy as received by the one or more non-inductive antennas; and one or more connection pads substantially enclosed within the housing, wherein the connection pads are configured to couple with one or more electrodes in the implantable lead and form an electric connection over which the connection pads provide the extracted excitation waveforms from the electronic circuit to the electrodes in the implantable lead, the implantable lead being separate from the device.
    Type: Grant
    Filed: December 5, 2013
    Date of Patent: August 6, 2019
    Assignee: Stimwave Technologies Incorporated
    Inventors: Laura Tyler Perryman, Chad Andresen
  • Patent number: 10315039
    Abstract: A system includes a controller module, which includes a storage device, a controller, a modulator, and one or more antennas. The storage device is stored with parameters defining a stimulation waveform. The controller is configured to generate, based on the stored parameters, an output signal that includes the stimulation waveform, wherein the output signal additionally includes polarity assignments for electrodes in an implantable, passive stimulation device. The modulator modulates a stimulus carrier signal with the output signal to generate a transmission signal.
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: June 11, 2019
    Assignee: Stimwave Technologies Incorporated
    Inventors: Laura Tyler Perryman, Patrick Larson, Chad Andresen
  • Patent number: 10293169
    Abstract: A wearable device for facilitating neurophysiological treatment of a patient harboring an implanted neural stimulator is provided. The wearable device includes a transmitting antenna configured to accept one or more input signals and to transmit one or more electromagnetic signals to a neural stimulator that is implanted in a patient's body. The wearable device further includes a control circuitry configured to provide the one or more input signals to the transmitting antenna. The wearable device further includes a battery that provides electrical power to at least the control circuitry. The wearable device is configured to be worn outside the patient's body.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: May 21, 2019
    Assignee: Stimwave Technologies Incorporated
    Inventors: Laura Tyler Perryman, Elizabeth Greene, Chad Andresen
  • Publication number: 20190143124
    Abstract: Some implementations may provide an implantable wirelessly powered device that includes: one or more electrodes configured to apply one or more electrical pulses to an excitable tissue; and a first antenna configured to: receive, from a second antenna and through electrical radiative coupling, an input signal containing electrical energy, the second antenna being physically separate from the implantable device; and one or more circuits electrically connected to the first antenna, the circuits configured to: create the one or more electrical pulses suitable for stimulation of excitable tissue using the electrical energy contained in the input signal; and supply the one or more electrical pulses to the one or more electrodes, wherein the implantable device is shaped and arranged for delivery into a subject's body through an introducer or a needle of 18 gauge or smaller.
    Type: Application
    Filed: January 15, 2019
    Publication date: May 16, 2019
    Applicant: Stimwave Technologies Corporation
    Inventors: Laura Tyler Perryman, Chad Andresen
  • Patent number: 10245436
    Abstract: Some implementations may provide an implantable wirelessly powered device that includes: one or more electrodes configured to apply one or more electrical pulses to an excitable tissue; and a first antenna configured to: receive, from a second antenna and through electrical radiative coupling, an input signal containing electrical energy, the second antenna being physically separate from the implantable device; and one or more circuits electrically connected to the first antenna, the circuits configured to: create the one or more electrical pulses suitable for stimulation of excitable tissue using the electrical energy contained in the input signal; and supply the one or more electrical pulses to the one or more electrodes, wherein the implantable device is shaped and arranged for delivery into a subject's body through an introducer or a needle of 18 gauge or smaller.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: April 2, 2019
    Assignee: Stimwave Technologies Incorporated
    Inventors: Laura Tyler Perryman, Chad Andresen
  • Publication number: 20180264277
    Abstract: An implementation provides a system that includes: a control module including a first antenna, the control module configured to generate a first radio frequency (RF) signal and transmit the first RF signal using the first antenna; an implantable lead module including a second antenna and at least one electrode configured to stimulate excitable tissue of a subject; and a relay module configured to receive the first RF signal; generate a second RF signal based on the first RF signal, the second RF signal encoding a stimulus waveform to be applied by the at least one electrodes of the implantable lead module to stimulate the excitable tissue of the subject; and transmit the second RF signal to the implantable lead module.
    Type: Application
    Filed: May 18, 2018
    Publication date: September 20, 2018
    Inventors: Laura Tyler Perryman, Chad Andresen
  • Publication number: 20180236248
    Abstract: An implantable neural stimulator method for modulating excitable tissue in a patient including: implanting a neural stimulator within the body of the patient such that one or more electrodes of the neural stimulator are positioned at a target site adjacent to or near excitable tissue; generating an input signal with a controller module located outside of, and spaced away from, the patient's body; transmitting the input signal to the neural stimulator through electrical radiative coupling; converting the input signal to electrical pulses within the neural stimulator; and applying the electrical pulses to the excitable tissue sufficient to modulate said excitable tissue.
    Type: Application
    Filed: March 26, 2018
    Publication date: August 23, 2018
    Inventors: Laura Tyler Perryman, Patrick Larson, Chad Andresen
  • Publication number: 20180169423
    Abstract: A system, including: an implantable neural stimulator including electrodes, at least one antenna and an electrode interface; a radio-frequency (RF) pulse generator module comprising an antenna module configured to send an input signal to the antenna in the implantable neural stimulator through electrical radiative coupling, the input signal containing electrical energy and polarity assignment information that designates polarity assignments of the electrodes in the implantable neural stimulator; and wherein the implantable neural stimulator is configured to: control the electrode interface such that the electrodes have the polarity assignments designated by the polarity assignment information, create one or more electrical pulses suitable for modulation of neural tissue using the electrical energy contained in the input signal, and supply the electrical pulses to the electrodes through the electrode interface such that the electrodes apply the electrical pulses to the neural tissue with the polarity assignmen
    Type: Application
    Filed: March 8, 2018
    Publication date: June 21, 2018
    Inventors: Laura Tyler Perryman, Patrick Larson, Chad Andresen
  • Patent number: 9974965
    Abstract: An implementation provides a system that includes: a control module including a first antenna, the control module configured to generate a first radio frequency (RF) signal and transmit the first RF signal using the first antenna; an implantable lead module including a second antenna and at least one electrode configured to stimulate excitable tissue of a subject; and a relay module configured to receive the first RF signal; generate a second RF signal based on the first RF signal, the second RF signal encoding a stimulus waveform to be applied by the at least one electrodes of the implantable lead module to stimulate the excitable tissue of the subject; and transmit the second RF signal to the implantable lead module.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: May 22, 2018
    Assignee: Micron Devices LLC
    Inventors: Laura Tyler Perryman, Chad Andresen
  • Patent number: 9925384
    Abstract: An implantable neural stimulator method for modulating excitable tissue in a patient including: implanting a neural stimulator within the body of the patient such that one or more electrodes of the neural stimulator are positioned at a target site adjacent to or near excitable tissue; generating an input signal with a controller module located outside of, and spaced away from, the patient's body; transmitting the input signal to the neural stimulator through electrical radiative coupling; converting the input signal to electrical pulses within the neural stimulator; and applying the electrical pulses to the excitable tissue sufficient to modulate said excitable tissue.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: March 27, 2018
    Assignee: Micron Devices LLC
    Inventors: Laura Tyler Perryman, Patrick Larson, Chad Andresen
  • Patent number: 9907950
    Abstract: Some implementations provide a method for modulating excitable tissue in a body of a patient, the method including: placing a wireless implantable stimulator device at a target site in the patient's body, the stimulator device including one or more electrodes; reconfiguring the wireless implantable stimulator device to form an enclosure that substantially surrounds the excitable tissue at the target site with the electrodes on the inside of the enclosure and facing the nerve; and causing electrical impulses to be delivered to the electrodes on the wireless implantable stimulator device such that neural modulation is applied to the excitable tissue substantially surrounded by the enclosure.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: March 6, 2018
    Assignee: Micron Devices LLC
    Inventors: Laura Tyler Perryman, Patrick Larson, Chad Andresen
  • Patent number: 9789314
    Abstract: An implantable wireless lead includes an enclosure, the enclosure housing: one or more electrodes configured to apply one or more electrical pulses to a neural tissue; a first antenna configured to: receive, from a second antenna and through electrical radiative coupling, an input signal containing electrical energy, the second antenna being physically separate from the implantable neural stimulator lead; one or more circuits electrically connected to the first antenna, the circuits configured to: create the one or more electrical pulses suitable for stimulation of the neural tissue using the electrical energy contained in the input signal; and supply the one or more electrical pulses to the one or more electrodes, wherein the enclosure is shaped and arranged for delivery into a subject's body through an introducer or a needle.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: October 17, 2017
    Assignee: Micron Devices LLC
    Inventors: Laura Tyler Perryman, Patrick Larson, Chad Andresen
  • Patent number: 9757571
    Abstract: A system, including: an implantable neural stimulator including electrodes, at least one antenna and an electrode interface; a radio-frequency (RF) pulse generator module comprising an antenna module configured to send an input signal to the antenna in the implantable neural stimulator through electrical radiative coupling, the input signal containing electrical energy and polarity assignment information that designates polarity assignments of the electrodes in the implantable neural stimulator; and wherein the implantable neural stimulator is configured to: control the electrode interface such that the electrodes have the polarity assignments designated by the polarity assignment information, create one or more electrical pulses suitable for modulation of neural tissue using the electrical energy contained in the input signal, and supply the electrical pulses to the electrodes through the electrode interface such that the electrodes apply the electrical pulses to the neural tissue with the polarity assignmen
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: September 12, 2017
    Assignee: Micron Devices LLC
    Inventors: Laura Tyler Perryman, Patrick Larson, Chad Andresen
  • Patent number: 9717921
    Abstract: Some implementations provide a method of treating chronic pain or inflammation with neural modulation, the method including: placing a surgical instrument to reach into a torso section of a patient's body, the patient suffering from chronic pain or inflammation in a primary area in the torso section; placing a wireless device into an opening on the surgical instrument, the wireless device suitable to fit into the opening and configured to receive electromagnetic energy non-inductively from a source located outside the patient's body; through the opening on the surgical instrument, positioning the wireless electrode lead adjacent to or near excitable tissue in the primary area in the torso section of the patient; and causing electrical pulses to be delivered to one or more electrodes on the wireless device such that neural modulation is applied to the excitable tissue in the primary area in the torso section.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: August 1, 2017
    Assignee: Micron Devices, LLC
    Inventors: Laura Tyler Perryman, Chad Andresen