Patents by Inventor Chad Conroy

Chad Conroy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10850510
    Abstract: Methods and apparatuses for controlling aerosol streams being deposited onto a substrate via pneumatic shuttering. The aerosol stream is surrounded and focused by an annular co-flowing sheath gas in the print head of the apparatus. A boost gas flows to a vacuum pump during printing of the aerosol. A valve adds the boost gas to the sheath gas at the appropriate time, and a portion of the two gases is deflected in a direction opposite to the aerosol flow direction to at least partially prevent the aerosol from passing through the deposition nozzle. Some or all of the aerosol is combined with that portion of the boost gas and sheath gas and is exhausted from the print head. By precisely balancing the flows into and out of the print head, maintaining the flow rates of the aerosol and sheath gas approximately constant, and keeping the boost gas flowing during both printing and shuttering, the transition time between printing and partial or full shuttering of the aerosol stream is minimized.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: December 1, 2020
    Assignee: Optomec, Inc.
    Inventors: Kurt K. Christenson, Michael J. Renn, Jason A. Paulsen, John David Hamre, Chad Conroy, James Q. Feng
  • Patent number: 10632746
    Abstract: Methods and apparatuses for controlling aerosol streams being deposited onto a substrate via pneumatic shuttering. The aerosol stream is surrounded and focused by an annular co-flowing sheath gas in the print head of the apparatus. A boost gas flows to a vacuum pump during printing of the aerosol. A valve adds the boost gas to the sheath gas at the appropriate time, and a portion of the two gases is deflected in a direction opposite to the aerosol flow direction to at least partially prevent the aerosol from passing through the deposition nozzle. Some or all of the aerosol is combined with that portion of the boost gas and sheath gas and is exhausted from the print head. By precisely balancing the flows into and out of the print head, maintaining the flow rates of the aerosol and sheath gas approximately constant, and keeping the boost gas flowing during both printing and shuttering, the transition time between printing and partial or full shuttering of the aerosol stream is minimized.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: April 28, 2020
    Assignee: Optomec, Inc.
    Inventors: Kurt K. Christenson, Michael J. Renn, Jason A. Paulsen, John David Hamre, Chad Conroy, James Q. Feng
  • Publication number: 20200122461
    Abstract: Methods and apparatuses for controlling aerosol streams being deposited onto a substrate via pneumatic shuttering. The aerosol stream is surrounded and focused by an annular co-flowing sheath gas in the print head of the apparatus. A boost gas flows to a vacuum pump during printing of the aerosol. A valve adds the boost gas to the sheath gas at the appropriate time, and a portion of the two gases is deflected in a direction opposite to the aerosol flow direction to at least partially prevent the aerosol from passing through the deposition nozzle. Some or all of the aerosol is combined with that portion of the boost gas and sheath gas and is exhausted from the print head. By precisely balancing the flows into and out of the print head, maintaining the flow rates of the aerosol and sheath gas approximately constant, and keeping the boost gas flowing during both printing and shuttering, the transition time between printing and partial or full shuttering of the aerosol stream is minimized.
    Type: Application
    Filed: December 18, 2019
    Publication date: April 23, 2020
    Applicant: Optomec, Inc.
    Inventors: Kurt K. Christenson, Michael J. Renn, Jason A. Paulsen, John David Hamre, Chad Conroy, James Q. Feng
  • Publication number: 20190143678
    Abstract: Methods and apparatuses for controlling aerosol streams being deposited onto a substrate via pneumatic shuttering. The aerosol stream is surrounded and focused by an annular co-flowing sheath gas in the print head of the apparatus. A boost gas flows to a vacuum pump during printing of the aerosol. A valve adds the boost gas to the sheath gas at the appropriate time, and a portion of the two gases is deflected in a direction opposite to the aerosol flow direction to at least partially prevent the aerosol from passing through the deposition nozzle. Some or all of the aerosol is combined with that portion of the boost gas and sheath gas and is exhausted from the print head. By precisely balancing the flows into and out of the print head, maintaining the flow rates of the aerosol and sheath gas approximately constant, and keeping the boost gas flowing during both printing and shuttering, the transition time between printing and partial or full shuttering of the aerosol stream is minimized.
    Type: Application
    Filed: November 13, 2018
    Publication date: May 16, 2019
    Inventors: Kurt K. Christenson, Michael J. Renn, Jason A. Paulsen, John David Hamre, Chad Conroy, James Q. Feng
  • Publication number: 20100285218
    Abstract: A deposition source includes at least one crucible for containing deposition material. A body includes a conductance channel with an input coupled to an output of the crucible. A heater increases a temperature of the crucible so that the crucible evaporates the deposition material into the conductance channel. A plurality of nozzles is coupled to an output of the conductance channel so that evaporated deposition material is transported from the crucible through the conductance channel to the plurality of nozzles where the evaporated deposition material is ejected from the plurality of nozzles to form a deposition flux. At least one of the plurality of nozzles includes a tube that is positioned proximate to the conductance channel so that the tube restricts an amount of deposition material supplied to the nozzle including the tube.
    Type: Application
    Filed: June 17, 2010
    Publication date: November 11, 2010
    Applicant: VEECO INSTRUMENTS INC.
    Inventors: Chad Conroy, Scott Wayne Priddy, Jacob A. Dahlstrom, Rich Bresnahan, David William Gotthold, John Patrin
  • Publication number: 20100282167
    Abstract: A deposition source includes a crucible for containing deposition material and a body comprising a conductance channel. An input of the conductance channel is coupled to an output of the crucible. A heater heats the crucible so that the crucible evaporates the deposition material into the conductance channel. A heat shield comprising a plurality of heat resistant material layers is positioned around at least one of the heater and the body. A plurality of nozzles is coupled to an output of the conductance channel so that evaporated deposition material is transported from the crucible through the conductance channel to the plurality of nozzles where the evaporated deposition material is ejected from the plurality of nozzles to form a deposition flux.
    Type: Application
    Filed: June 17, 2010
    Publication date: November 11, 2010
    Applicant: VEECO INSTRUMENTS INC.
    Inventors: Chad Conroy, Scott Wayne Priddy, Jacob A. Dahlstrom, Rich Bresnahan, David William Gotthold, John Patrin
  • Publication number: 20100159132
    Abstract: A deposition source includes a plurality of crucibles that each contains a deposition material. A heat shield provides at least partial thermal isolation for at least one of the plurality of crucibles. A body is included with a plurality of conductance channels. An input of each of the plurality of conductance channels is coupled to an output of a respective one of the plurality of crucibles. A heater increases a temperature of the plurality of crucibles so that each crucible evaporates the deposition material into the plurality of conductance channels. An input of each of a plurality of nozzles is coupled to an output of one of the plurality of conductance channels. Evaporated deposition materials are transported from the crucibles through the conductance channels to the nozzles where the evaporated deposition material is ejected from the plurality of nozzles to form a deposition flux.
    Type: Application
    Filed: November 30, 2009
    Publication date: June 24, 2010
    Applicant: VEECO INSTRUMENTS, INC.
    Inventors: Chad Conroy, Scott Wayne Priddy, Jacob Allan Dahlstrom, Richard Charles Bresnahan, David William Gotthold, John Charles Patrin
  • Publication number: 20080053123
    Abstract: A burn-in oven is provided with a plurality of spaced, stacked burn-in-boards, each with a plurality of individual circuits being tested under heated conditions, and a plurality of valve trays positioned between two burn-in-boards to form a heat exchange compartment below the valve tray. Each valve tray has a plenum formed above it to provide a separate chamber that is a source of cooling air. Each valve tray has a plurality of valves, one over each of a number openings in the tray. Each opening overlies an integrated circuits or device under test on the burn-in-board below the valve tray. The valves control the flow of air for cooling the integrated circuits. The flow of air through the valves is the only path for cooling airflow to the integrated circuits on the burn-in-boards.
    Type: Application
    Filed: October 25, 2007
    Publication date: March 6, 2008
    Inventors: Harold Hamilton, Chad Conroy
  • Publication number: 20050103034
    Abstract: A burn-in oven is provided with a plurality of spaced, stacked burn-in-boards, each with a plurality of individual circuits being tested under heated conditions, and a plurality of valve trays positioned between two burn-in-boards to form a heat exchange compartment below the valve tray. Each valve tray has a plenum formed above it to provide a separate chamber that is a source of cooling air. Each valve tray has a plurality of valves, one over each of a number openings in the tray. Each opening overlies an integrated circuits or device under test on the burn-in-board below the valve tray. The valves control the flow of air for cooling the integrated circuits. The flow of air through the valves is the only path for cooling airflow to the integrated circuits on the burn-in-boards.
    Type: Application
    Filed: November 14, 2003
    Publication date: May 19, 2005
    Applicant: Micro Control Company
    Inventors: Harold Hamilton, Chad Conroy
  • Publication number: 20050077281
    Abstract: A burn-in oven is provided with a wall that has a number of vertically stacked, laterally extending slots aligned with each of the burn-in-board supports in the oven. When a burn-in-board is placed in the oven on the supports, an edge portion of the burn-in-board extends through a slot into a connector area. Each of the slots has a shutter associated therewith that will move from an open position to permit the burn-in-board connector portion to extend through the slot, to a closed position wherein the shutter covers the slot. A cam operator moves the shutters to a closed position, except when a burn-in-board is extending through a particular slot, it will support the shutter in its open position and the shutter will not be moved by the cam. All the shutters associated with openings through which no burn-in-board connector portion extends will be closed to prevent air flow from the burn-in oven.
    Type: Application
    Filed: October 9, 2003
    Publication date: April 14, 2005
    Applicant: Micro Control Company
    Inventors: Harold Hamilton, Chad Conroy, Brian Bloch