Patents by Inventor Chad Fertig

Chad Fertig has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240192574
    Abstract: A nonlinear wave mixing system with grating assisted phase matching is provided. The system includes a pump laser and a nonlinear waveguide. The pump laser is used to generate pump light at a select wavelength. The nonlinear waveguide is configured to generate produced light from the pump light that is directed into the nonlinear waveguide. The nonlinear waveguide includes at least one backward grating that is configured to diffract the produced light in a backward direction relative to a direction the produced light travels in the nonlinear waveguide to reach the backward grating. The backward grating having a grating momentum that generates counter-propagating phase matching in the produced light.
    Type: Application
    Filed: February 22, 2024
    Publication date: June 13, 2024
    Applicant: Honeywell International Inc.
    Inventors: Matthew Wade Puckett, Chad Fertig, Matthew Robbins, Jad Salman
  • Patent number: 11988774
    Abstract: Embodiments relating to an integrated photonics air data system are disclosed. A light beam from a laser source is routed to a plurality of tunable optical filters operative to transmit the light beam to one of a plurality of emitting grating couplers at any given time. The tunable optical filters are configured such that the light beam is emitted into the region of interest at different times from each of the emitting grating couplers. A passive optical filter array is configured to receive scattered light from the emitted light beam. The passive optical filter array comprises a plurality of optical notch filters operative for frequency selection, and a plurality of optical detectors each respectively coupled to an output of one of the optical notch filters. The passive optical filter array is operative to perform frequency spectrum decomposition of the received scattered light into a plurality of signals.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: May 21, 2024
    Assignee: Honeywell International Inc.
    Inventors: Matthew Wade Puckett, Steven Tin, Chad Fertig
  • Patent number: 11990945
    Abstract: A system includes a quantum light device comprising a light source configured to emit a plurality of pairs of photons, wherein each pair of photons of the plurality of pairs of photons occupies a quantum entangled state. The system also includes optical circuitry configured to receive a first set of photons and a second set of photons. A set of photon detectors may receive the first set of photons and the second set of photons from the optical circuitry. Additionally, the system may include processing circuitry configured to determine, based on a set of time signals corresponding to each photon detector of the set of photon detectors, whether a time delay value exists in which a Clauser, Home, Shimony and Holt (CHSH) parameter is greater than a threshold CHSH parameter value.
    Type: Grant
    Filed: June 22, 2022
    Date of Patent: May 21, 2024
    Assignee: Honeywell International Inc.
    Inventors: Neal Solmeyer, Chad Fertig
  • Patent number: 11940715
    Abstract: A nonlinear wave mixing system with grating assisted phase matching is provided. The system includes a pump laser and a nonlinear waveguide. The pump laser is used to generate pump light at a select wavelength. The nonlinear waveguide is configured to generate produced light from the pump light that is directed into the nonlinear waveguide. The nonlinear waveguide includes at least one backward grating that is configured to diffract the produced light in a backward direction relative to a direction the produced light travels in the nonlinear waveguide to reach the backward grating. The backward grating having a grating momentum that generates counter-propagating phase matching in the produced light.
    Type: Grant
    Filed: August 31, 2022
    Date of Patent: March 26, 2024
    Assignee: Honeywell International Inc.
    Inventors: Matthew Wade Puckett, Chad Fertig, Matthew Robbins, Jad Salman
  • Publication number: 20240069407
    Abstract: A nonlinear wave mixing system with grating assisted phase matching is provided. The system includes a pump laser and a nonlinear waveguide. The pump laser is used to generate pump light at a select wavelength. The nonlinear waveguide is configured to generate produced light from the pump light that is directed into the nonlinear waveguide. The nonlinear waveguide includes at least one backward grating that is configured to diffract the produced light in a backward direction relative to a direction the produced light travels in the nonlinear waveguide to reach the backward grating. The backward grating having a grating momentum that generates counter-propagating phase matching in the produced light.
    Type: Application
    Filed: August 31, 2022
    Publication date: February 29, 2024
    Applicant: Honeywell International Inc.
    Inventors: Matthew Wade Puckett, Chad Fertig, Matthew Robbins, Jad Salman
  • Patent number: 11828981
    Abstract: An optical device comprises a waveguide core layer that includes a planar lens structure having a first end and a second end, with the planar lens structure including a plurality of lens tapers extending from at least one of the first or seconds ends in a convex-shaped array. The waveguide core layer also includes a waveguide slab that adjoins with the planar lens structure, such that the waveguide slab is in optical communication with the plurality of lens tapers. The plurality of lens tapers are configured to adiabatically transition an index of refraction from a first index value, external to the planar lens structure, to a second index value, internal to the planar lens structure.
    Type: Grant
    Filed: March 17, 2022
    Date of Patent: November 28, 2023
    Assignee: Honeywell International Inc.
    Inventors: Matthew Wade Puckett, Chad Hoyt, Chad Fertig, Matthew Robbins
  • Patent number: 11815718
    Abstract: Techniques relating to an improved optical waveguide are described. The optical waveguide includes an upper and lower waveguide that each comprise a first and second layer, in which photons are transferred from the lower waveguide to the upper waveguide. A structured subwavelength coupling region is included, for example, in the first upper waveguide layer. The fill factor of the subwavelength grating coupling region is increased in the direction of light propagation to increase the index of refraction of the structured subwavelength coupling region and therefore improve photon transfer from the lower waveguide. Additionally, the width of the optical waveguide (at least along the structured subwavelength coupling region) remains constant as the fill factor increases.
    Type: Grant
    Filed: November 19, 2021
    Date of Patent: November 14, 2023
    Assignee: Honeywell International Inc.
    Inventors: Matthew Wade Puckett, Chad Fertig, Steven Tin
  • Patent number: 11811456
    Abstract: Systems and embodiments for a multi-pixel waveguide optical receiver are described herein. In certain embodiments, a system includes an emitter that emits laser light towards a surface. The system also includes a receiver that passively receives reflected laser light that is a portion of the laser light reflected from the surface, wherein the receiver has multiple pixels having a size that is smaller than an expected optical speckle size, wherein the expected optical speckle size corresponds to a region on the receiver where the reflected laser light has a substantially uniform spatial phase. Additionally, the system includes a combiner configured to combine optical fields from each pixel in the multiple pixels into an output that supports a number of modes that is equal to a number of pixels in the multiple pixels. Moreover, the system includes a photodetector configured to receive light from the output.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: November 7, 2023
    Assignee: Honeywell International Inc.
    Inventors: Chad Fertig, Matthew Wade Puckett
  • Publication number: 20230296832
    Abstract: An optical device comprises a waveguide core layer that includes a planar lens structure having a first end and a second end, with the planar lens structure including a plurality of lens tapers extending from at least one of the first or seconds ends in a convex-shaped array. The waveguide core layer also includes a waveguide slab that adjoins with the planar lens structure, such that the waveguide slab is in optical communication with the plurality of lens tapers. The plurality of lens tapers are configured to adiabatically transition an index of refraction from a first index value, external to the planar lens structure, to a second index value, internal to the planar lens structure.
    Type: Application
    Filed: March 17, 2022
    Publication date: September 21, 2023
    Applicant: Honeywell International Inc.
    Inventors: Matthew Wade Puckett, Chad Hoyt, Chad Fertig, Matthew Robbins
  • Publication number: 20230216267
    Abstract: Among other embodiments, a method for generated entangled photons is disclosed. The method comprises generating photons in a fundamental mode and converting the photons from the fundamental mode to a higher-order mode. The method further comprises generating, by a Bragg resonator configured to receive the photons, entangled photons in the fundamental mode from the converted photons in the higher-order mode. The method further comprises outputting the generated entangled photons from the Bragg resonator.
    Type: Application
    Filed: January 3, 2022
    Publication date: July 6, 2023
    Applicant: Honeywell International Inc.
    Inventors: Matthew Wade Puckett, Chad Fertig, Matthew Robbins
  • Patent number: 11586094
    Abstract: Improved architectures and related methods for enhancing entangled photon generation in optical systems are described. Photons from a light source are coupled from the fundamental mode into an optical resonator in a higher-order mode. The optical resonator comprises a photon generation portion configured to generate entangled photons from the coupled photons. The entangled photons are selectively extracted from the optical resonator in the fundamental mode while the remaining photons propagate through the optical resonator mode and combine with the source photons entering the optical resonator. While the source photons propagating or entering the optical resonator resonate within the optical resonator, the entangled photons are not resonant with the optical resonator, and are selectively extracted before traversing a complete cycle in the optical resonator. Extracted entangled photons can then be output for use in, for example, a communication system.
    Type: Grant
    Filed: July 13, 2021
    Date of Patent: February 21, 2023
    Assignee: Honeywell International Inc.
    Inventors: Chad Fertig, Matthew Wade Puckett, Matthew Robbins, Neil A. Krueger
  • Patent number: 11585930
    Abstract: Systems and methods for a silicon photonics integrated optical velocimeter are provided herein. In some embodiments, a method includes producing a laser output at a laser source; emitting the laser output from a plurality of emitters formed in an optical chip; receiving a plurality of reflected portions of the emitted laser output at an optical collector formed in the optical chip, wherein the plurality of reflected portions are reflected off of at least one surface; beating the laser output against the reflected portions of the emitted laser output, wherein one of the laser output or the reflected portions of the emitted laser output are modulated by at least one modulation frequency; and calculating a doppler shift for each of the plurality of reflected portions of the emitted laser output based on an output of the beating and the at least one modulation frequency.
    Type: Grant
    Filed: February 6, 2020
    Date of Patent: February 21, 2023
    Assignee: Honeywell International Inc.
    Inventors: Steven Tin, Matthew Wade Puckett, Chad Fertig
  • Publication number: 20230012476
    Abstract: Improved architectures and related methods for enhancing entangled photon generation in optical systems are described. Photons from a light source are coupled from the fundamental mode into an optical resonator in a higher-order mode. The optical resonator comprises a photon generation portion configured to generate entangled photons from the coupled photons. The entangled photons are selectively extracted from the optical resonator in the fundamental mode while the remaining photons propagate through the optical resonator mode and combine with the source photons entering the optical resonator. While the source photons propagating or entering the optical resonator resonate within the optical resonator, the entangled photons are not resonant with the optical resonator, and are selectively extracted before traversing a complete cycle in the optical resonator. Extracted entangled photons can then be output for use in, for example, a communication system.
    Type: Application
    Filed: July 13, 2021
    Publication date: January 19, 2023
    Applicant: Honeywell International Inc.
    Inventors: Chad Fertig, Matthew Wade Puckett, Matthew Robbins, Neil A. Krueger
  • Publication number: 20220416906
    Abstract: A system includes a quantum light device comprising a light source configured to emit a plurality of pairs of photons, wherein each pair of photons of the plurality of pairs of photons occupies a quantum entangled state. The system also includes optical circuitry configured to receive a first set of photons and a second set of photons. A set of photon detectors may receive the first set of photons and the second set of photons from the optical circuitry. Additionally, the system may include processing cirucitry configured to determine, based on a set of time signals corresponding to each photon detector of the set of photon detectors, whether a time delay value exists in which a Clauser, Home, Shimony and Holt (CHSH) parameter is greater than a threshold CHSH parameter value.
    Type: Application
    Filed: June 22, 2022
    Publication date: December 29, 2022
    Inventors: Neal Solmeyer, Chad Fertig
  • Patent number: 11536908
    Abstract: A multilayer waveguide coupler comprising a first grating and a second grating is provided. Each first copropagating waveguide of the first grating has a first periodically modulated width. Each second copropagating waveguide of the second grating has a second periodically modulated width. The second grating is positioned so that a phase offset is present between the first periodically modulated width of the first copropagating waveguides and the second periodically modulated width of the second copropagating waveguides. The grating spaced distance and phase offset are selected so that light diffracted out of the first copropagating waveguides and the second copropagating waveguides in the first direction interferes constructively to form the first light beam and light diffracted out of the first copropagating waveguides and the second copropagating waveguides in the second direction interferes destructively.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: December 27, 2022
    Assignee: Honeywell International Inc.
    Inventors: Matthew Wade Puckett, Chad Fertig, Neil A. Krueger, Karl D. Nelson, Chad Hoyt
  • Publication number: 20220321228
    Abstract: Systems and embodiments for a multi-pixel waveguide optical receiver are described herein. In certain embodiments, a system includes an emitter that emits laser light towards a surface. The system also includes a receiver that passively receives reflected laser light that is a portion of the laser light reflected from the surface, wherein the receiver has multiple pixels having a size that is smaller than an expected optical speckle size, wherein the expected optical speckle size corresponds to a region on the receiver where the reflected laser light has a substantially uniform spatial phase. Additionally, the system includes a combiner configured to combine optical fields from each pixel in the multiple pixels into an output that supports a number of modes that is equal to a number of pixels in the multiple pixels. Moreover, the system includes a photodetector configured to receive light from the output.
    Type: Application
    Filed: March 30, 2021
    Publication date: October 6, 2022
    Applicant: Honeywell International Inc.
    Inventors: Chad Fertig, Matthew Wade Puckett
  • Patent number: 11442148
    Abstract: A sensor system comprises a pulsed light source, and a passive sensor head chip in communication with the light source. The sensor head chip includes a first photonics substrate, a transmitting optical component on the first photonics substrate and configured to couple a pulse, transmitted through a first optical fiber from the light source, into a region of interest; and a receiving optical component on the first photonics substrate and configured to couple backscattered light, received from the region of interest, into a second optical fiber. A signal processing chip communicates with the sensor head chip and light source. The signal processing chip includes a second photonics substrate and comprises a passive optical filter array that receives the backscattered light from the second optical fiber. The filter array includes notch filters in communication with each other and operative for frequency selection; and optical detectors respectively coupled to the notch filters.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: September 13, 2022
    Assignee: Honeywell International Inc.
    Inventors: Steven Tin, Chad Fertig, Matthew Wade Puckett, Neil A. Krueger, Jianfeng Wu
  • Publication number: 20220276615
    Abstract: A thermal metamaterial device comprises at least one MEMS thermal switch, comprising a substrate layer including a first material having a first thermal conductivity, and a thermal bus over a first portion of the substrate layer. The thermal bus includes a second material having a second thermal conductivity higher than the first thermal conductivity. An insulator layer is over a second portion of the substrate layer and includes a third material that is different from the first and second materials. A thermal pad is supported by a first portion of the insulator layer, the thermal pad including the second material and having an overhang portion located over a portion of the thermal bus. When a voltage is applied to the thermal pad, an electrostatic interaction occurs to cause a deflection of the overhang portion toward the thermal bus, thereby providing thermal conductivity between the thermal pad and the thermal bus.
    Type: Application
    Filed: February 26, 2021
    Publication date: September 1, 2022
    Applicant: Honeywell International Inc.
    Inventors: Robert Compton, Chad Fertig, Jeffrey James Kriz
  • Publication number: 20220252792
    Abstract: A multilayer waveguide coupler comprising a first grating and a second grating is provided. Each first copropagating waveguide of the first grating has a first periodically modulated width. Each second copropagating waveguide of the second grating has a second periodically modulated width. The second grating is positioned so that a phase offset is present between the first periodically modulated width of the first copropagating waveguides and the second periodically modulated width of the second copropagating waveguides. The grating spaced distance and phase offset are selected so that light diffracted out of the first copropagating waveguides and the second copropagating waveguides in the first direction interferes constructively to form the first light beam and light diffracted out of the first copropagating waveguides and the second copropagating waveguides in the second direction interferes destructively.
    Type: Application
    Filed: May 4, 2021
    Publication date: August 11, 2022
    Applicant: Honeywell International Inc.
    Inventors: Matthew Wade Puckett, Chad Fertig, Neil A. Krueger, Karl D. Nelson, Chad Hoyt
  • Patent number: 11408912
    Abstract: An optomechanical device for producing and detecting optical signals comprising a proof mass assembly, one or more laser devices, and a circuit. The one or more laser devices are configured to generate a first optical signal and a second optical signal. The circuit is configured to modulate, with an electro-optic modulator (EOM), the second optical signal, output the first optical signal and the second optical signal to the proof mass assembly, generate a filtered optical signal corresponding to a response by the proof mass assembly to the first optical signal without the second optical signal, and generate an electrical signal based on the filtered optical signal, wherein the EOM modulates the second optical signal based on the electrical signal.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: August 9, 2022
    Assignee: Honeywell International Inc.
    Inventors: Joshua Dorr, Chad Fertig, Arthur Savchenko, Steven Tin, Neil Krueger