Patents by Inventor Chad Huffman

Chad Huffman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7780939
    Abstract: This invention is directed to chemical derivatives of carbon nanotubes wherein the carbon nanotubes have a diameter up to 3 nm. In one embodiment, this invention also provides a method for preparing carbon nanotubes having substituents attached to the side wall of the nanotube by reacting single-wall carbon nanotubes with fluorine gas and recovering fluorine derivatized carbon nanotubes, then reacting fluorine derivatized carbon nanotubes with a nucleophile. Some of the fluorine substituents are replaced by nucleophilic substitution. If desired, the remaining fluorine can be completely or partially eliminated to produce carbon nanotubes having substituents attached to the side wall of the nanotube. The substituents are dependent on the nucleophile, and preferred nucleophiles include alkyl lithium species such as methyl lithium.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: August 24, 2010
    Assignee: William Marsh Rice University
    Inventors: John L. Margrave, Edward T. Mickelson, Robert Hauge, Peter Boul, Chad Huffman, Jie Liu, Richard E. Smalley, Ken Smith, Daniel T. Colbert
  • Patent number: 7527780
    Abstract: This invention is directed to making chemical derivatives of carbon nanotubes and to uses for the derivatized nanotubes, including making arrays as a basis for synthesis of carbon fibers. In one embodiment, this invention also provides a method for preparing single wall carbon nanotubes having substituents attached to the side wall of the nanotube by reacting single wall carbon nanotubes with fluorine gas and recovering fluorine derivatized carbon nanotubes, then reacting fluorine derivatized carbon nanotubes with a nucleophile. Some of the fluorine substituents are replaced by nucleophilic substitution. If desired, the remaining fluorine can be completely or partially eliminated to produce single wall carbon nanotubes having substituents attached to the side wall of the nanotube. The substituents will, of course, be dependent on the nucleophile, and preferred nucleophiles include alkyl lithium species such as methyl lithium.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: May 5, 2009
    Assignee: William Marsh Rice University
    Inventors: John L. Margrave, Edward T. Mickelson, Robert Hauge, Peter Boul, Chad Huffman, Jie Liu, Richard E. Smalley, Ken Smith, Daniel T. Colbert
  • Publication number: 20070098621
    Abstract: This invention is directed to making chemical derivatives of carbon nanotubes and to uses for the derivatized nanotubes, including making arrays as a basis for synthesis of carbon fibers. In one embodiment, this invention also provides a method for preparing single wall carbon nanotubes having substituents attached to the side wall of the nanotube by reacting single wall carbon nanotubes with fluorine gas and recovering fluorine derivatized carbon nanotubes, then reacting fluorine derivatized carbon nanotubes with a nucleophile. Some of the fluorine substituents are replaced by nucleophilic substitution. If desired, the remaining fluorine can be completely or partially eliminated to produce single wall carbon nanotubes having substituents attached to the side wall of the nanotube. The substituents will, of course, be dependent on the nucleophile, and preferred nucleophiles include alkyl lithium species such as methyl lithium.
    Type: Application
    Filed: June 13, 2006
    Publication date: May 3, 2007
    Applicant: William Marsh Rice University
    Inventors: John Margrave, Edward Mickelson, Robert Hauge, Peter Boul, Chad Huffman, Jie Liu, Richard Smalley
  • Publication number: 20050169830
    Abstract: The present invention is directed to the creation of macroscopic materials and objects comprising aligned nanotube segments. The invention entails aligning single-wall carbon nanotube (SWNT) segments that are suspended in a fluid medium and then removing the aligned segments from suspension in a way that macroscopic, ordered assemblies of SWNT are formed. The invention is further directed to controlling the natural proclivity of nanotube segments to self assemble into ordered structures by modifying the environment of the nanotubes and the history of that environment prior to and during the process. The materials and objects are “macroscopic” in that they are large enough to be seen without the aid of a microscope or of the dimensions of such objects.
    Type: Application
    Filed: January 16, 2004
    Publication date: August 4, 2005
    Applicant: William Marsh Rice University
    Inventors: Smalley Richard, Daniel Colbert, Kenneth Smith, Deron Walters, Michael Casavant, Chad Huffman, Boris Yakobson, Robert Hauge, Rajesh Saini, Wan-Ting Chiang, Xiao Qin
  • Patent number: 6875412
    Abstract: This invention is directed to making chemical derivatives of carbon nanotubes and to uses for the derivatized nanotubes, including making arrays as a basis for synthesis of carbon fibers. In one embodiment, this invention also provides a method for preparing single wall carbon nanotubes having substituents attached to the side wall of the nanotube by reacting single wall carbon nanotubes with fluorine gas and recovering fluorine derivatized carbon nanotubes, then reacting fluorine derivatized carbon nanotubes with a nucleophile. Some of the fluorine substituents are replaced by nucleophilic substitution. If desired, the remaining fluorine can be completely or partially eliminated to produce single wall carbon nanotubes having substituents attached to the side wall of the nanotube. The substituents will, of course, be dependent on the nucleophile, and preferred nucleophiles include alkyl lithium species such as methyl lithium.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: April 5, 2005
    Assignee: William Marsh Rice University
    Inventors: John L. Margrave, Edward T. Mickelson, Robert Hauge, Peter Boul, Chad Huffman, Jie Liu, Richard E. Smalley, Ken Smith, Daniel T. Colbert
  • Patent number: 6841139
    Abstract: This invention is directed to making chemical derivatives of carbon nanotubes and to uses for the derivatized nanotubes, including making arrays as a basis for synthesis of carbon fibers. In one embodiment, this invention also provides a method for preparing single wall carbon nanotubes having substituents attached to the side wall of the nanotube by reacting single wall carbon nanotubes with fluorine gas and recovering fluorine derivatized carbon nanotubes, then reacting fluorine derivatized carbon nanotubes with a nucleophile. Some of the fluorine substituents are replaced by nucleophilic substitution. If desired, the remaining fluorine can be completely or partially eliminated to produce single wall carbon nanotubes having substituents attached to the side wall of the nanotube. The substituents will, of course, be dependent on the nucleophile, and preferred nucleophiles include alkyl lithium species such as methyl lithium.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: January 11, 2005
    Assignee: William Marsh Rice University
    Inventors: John L. Margrave, Edward T. Mickelson, Robert Hauge, Peter Boul, Chad Huffman, Jie Liu, Richard E. Smalley, Ken Smith, Daniel T. Colbert
  • Patent number: 6835366
    Abstract: This invention is directed to making chemical derivatives of carbon nanotubes and to uses for the derivatized nanotubes, including making arrays as a basis for synthesis of carbon fibers. In one embodiment, this invention also provides a method for preparing single wall carbon nanotubes having substituents attached to the side wall of the nanotube by reacting single wall carbon nanotubes with fluorine gas and recovering fluorine derivatized carbon nanotubes, then reacting fluorine derivatized carbon nanotubes with a nucleophile. Some of the fluorine substituents are replaced by nucleophilic substitution. If desired, the remaining fluorine can be completely or partially eliminated to produce single wall carbon nanotubes having substituents attached to the side wall of the nanotube. The substituents will, of course, be dependent on the nucleophile, and preferred nucleophiles include alkyl lithium species such as methyl lithium.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: December 28, 2004
    Assignee: William Marsh Rice University
    Inventors: John L. Margrave, Edward T. Mickelson, Robert Hauge, Peter Boul, Chad Huffman, Jie Liu, Richard E. Smalley, Ken Smith, Daniel T. Colbert
  • Patent number: 6827918
    Abstract: This invention is directed to making chemical derivatives of carbon nanotubes and to uses for the derivatized nanotubes, including making arrays as a basis for synthesis of carbon fibers. In one embodiment, this invention also provides a method for preparing single wall carbon nanotubes having substituents attached to the side wall of the nanotube by reacting single wall carbon nanotubes with fluorine gas and recovering fluorine derivatized carbon nanotubes, then reacting fluorine derivatized carbon nanotubes with a nucleophile. Some of the fluorine substituents are replaced by nucleophilic substitution. If desired, the remaining fluorine can be completely or partially eliminated to produce single wall carbon nanotubes having substituents attached to the side wall of the nanotube. The substituents will, of course, be dependent on the nucleophile, and preferred nucleophiles include alkyl lithium species such as methyl lithium.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: December 7, 2004
    Assignee: William Marsh Rice University
    Inventors: John L. Margrave, Edward T. Mickelson, Robert Hauge, Peter Boul, Chad Huffman, Jie Liu, Richard E. Smalley, Ken Smith, Daniel T. Colbert
  • Patent number: 6645455
    Abstract: This invention is directed to making chemical derivatives of carbon nanotubes and to uses for the derivatized nanotubes, including making arrays as a basis for synthesis of carbon fibers. In one embodiment, this invention also provides a method for preparing single wall carbon nanotubes having substituents attached to the side wall of the nanotube by reacting single wall carbon nanotubes with fluorine gas and recovering fluorine derivatized carbon nanotubes, then reacting fluorine derivatized carbon nanotubes with a nucleophile. Some of the fluorine substituents are replaced by nucleophilic substitution. If desired, the remaining fluorine can be completely or partially eliminated to produce single wall carbon nanotubes having substituents attached to the side wall of the nanotube. The substituents will, of course, be dependent on the nucleophile, and preferred nucleophiles include alkyl lithium species such as methyl lithium.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: November 11, 2003
    Assignee: William Marsh Rice University
    Inventors: John L. Margrave, Edward T. Mickelson, Robert Hauge, Peter Boul, Chad Huffman, Jie Liu, Richard E. Smalley, Ken Smith, Daniel T. Colbert
  • Publication number: 20020110513
    Abstract: This invention is directed to making chemical derivatives of carbon nanotubes and to uses for the derivatized nanotubes, including making arrays as a basis for synthesis of carbon fibers. In one embodiment, this invention also provides a method for preparing single wall carbon nanotubes having substituents attached to the side wall of the nanotube by reacting single wall carbon nanotubes with fluorine gas and recovering fluorine derivatized carbon nanotubes, then reacting fluorine derivatized carbon nanotubes with a nucleophile. Some of the fluorine substituents are replaced by nucleophilic substitution. If desired, the remaining fluorine can be completely or partially eliminated to produce single wall carbon nanotubes having substituents attached to the side wall of the nanotube. The substituents will, of course, be dependent on the nucleophile, and preferred nucleophiles include alkyl lithium species such as methyl lithium.
    Type: Application
    Filed: March 16, 2001
    Publication date: August 15, 2002
    Inventors: John L. Margrave, Edward T. Mickelson, Robert Hague, Peter Boul, Chad Huffman, Jie Liu, Richard E. Smalley, Ken Smith, Daniel T. Colbert
  • Publication number: 20020086124
    Abstract: This invention is directed to making chemical derivatives of carbon nanotubes and to uses for the derivatized nanotubes, including making arrays as a basis for synthesis of carbon fibers. In one embodiment, this invention also provides a method for preparing single wall carbon nanotubes having substituents attached to the side wall of the nanotube by reacting single wall carbon nanotubes with fluorine gas and recovering fluorine derivatized carbon nanotubes, then reacting fluorine derivatized carbon nanotubes with a nucleophile. Some of the fluorine substituents are replaced by nucleophilic substitution. If desired, the remaining fluorine can be completely or partially eliminated to produce single wall carbon nanotubes having substituents attached to the side wall of the nanotube. The substituents will, of course, be dependent on the nucleophile, and preferred nucleophiles include alkyl lithium species such as methyl lithium.
    Type: Application
    Filed: March 16, 2001
    Publication date: July 4, 2002
    Inventors: John L. Margrave, Edward T. Mickelson, Robert Hauge, Peter Boul, Chad Huffman, Jie Liu, Richard E. Smalley, Ken Smith, Daniel T. Colbert
  • Publication number: 20020004028
    Abstract: This invention is directed to making chemical derivatives of carbon nanotubes and to uses for the derivatized nanotubes, including making arrays as a basis for synthesis of carbon fibers. In one embodiment, this invention also provides a method for preparing single wall carbon nanotubes having substituents attached to the side wall of the nanotube by reacting single wall carbon nanotubes with fluorine gas and recovering fluorine derivatized carbon nanotubes, then reacting fluorine derivatized carbon nanotubes with a nucleophile. Some of the fluorine substituents are replaced by nucleophilic substitution. If desired, the remaining fluorine can be completely or partially eliminated to produce single wall carbon nanotubes having substituents attached to the side wall of the nanotube. The substituents will, of course, be dependent on the nucleophile, and preferred nucleophiles include alkyl lithium species such as methyl lithium.
    Type: Application
    Filed: March 16, 2001
    Publication date: January 10, 2002
    Inventors: John L. Margrave, Edward T. Mickelson, Robert Hauge, Peter Boul, Chad Huffman, Jie Liu, Richard E. Smalley, Ken Smith, Daniel T. Colbert
  • Publication number: 20010041160
    Abstract: This invention is directed to making chemical derivatives of carbon nanotubes and to uses for the derivatized nanotubes, including making arrays as a basis for synthesis of carbon fibers. In one embodiment, this invention also provides a method for preparing single wall carbon nanotubes having substituents attached to the side wall of the nanotube by reacting single wall carbon nanotubes with fluorine gas and recovering fluorine derivatized carbon nanotubes, then reacting fluorine derivatized carbon nanotubes with a nucleophile. Some of the fluorine substituents are replaced by nucleophilic substitution. If desired, the remaining fluorine can be completely or partially eliminated to produce single wall carbon nanotubes having substituents attached to the side wall of the nanotube. The substituents will, of course, be dependent on the nucleophile, and preferred nucleophiles include alkyl lithium species such as methyl lithium.
    Type: Application
    Filed: March 16, 2001
    Publication date: November 15, 2001
    Inventors: John L. Margrave, Edward T. Mickelson, Robert Hauge, Peter Boul, Chad Huffman, Jie Liu, Richard E. Smalley, Ken Smith, Daniel T. Colbert
  • Publication number: 20010031900
    Abstract: This invention is directed to making chemical derivatives of carbon nanotubes and to uses for the derivatized nanotubes, including making arrays as a basis for synthesis of carbon fibers. In one embodiment, this invention also provides a method for preparing single wall carbon nanotubes having substituents attached to the side wall of the nanotube by reacting single wall carbon nanotubes with fluorine gas and recovering fluorine derivatized carbon nanotubes, then reacting fluorine derivatized carbon nanotubes with a nucleophile. Some of the fluorine substituents are replaced by nucleophilic substitution. If desired, the remaining fluorine can be completely or partially eliminated to produce single wall carbon nanotubes having substituents attached to the side wall of the nanotube. The substituents will, of course, be dependent on the nucleophile, and preferred nucleophiles include alkyl lithium species such as methyl lithium.
    Type: Application
    Filed: March 16, 2001
    Publication date: October 18, 2001
    Inventors: John L. Margrave, Edward T. Mickelson, Robert Hauge, Peter Boul, Chad Huffman, Jie Liu, Richard E. Smalley, Ken Smith, Daniel T. Colbert