Patents by Inventor Chad Husko

Chad Husko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210370309
    Abstract: Methods for forming black phosphorus alloys and exfoliating black phosphorus alloys. A method for forming black phosphorus alloys includes providing phosphorus inside a vessel and providing an element inside the vessel. Media is provided inside the vessel and the phosphorus, the element, and the media are sealed under a gas within the vessel. The phosphorus and the element are mechanically milled with the media to produce black phosphorus that is covalently bonded with the element. A method for exfoliating a black phosphorus alloy includes mixing a milled black phosphorus alloy with a solvent and mixing a milled black phosphorus alloy with a solvent. The milled black phosphorus alloy and solvent mixture are then extracted from the milling apparatus, which may be a planetary ball mill, a vibratory mill, a tumbler ball mill, a mixer mill, a rod mill, an attrition mill, or a shaker mill.
    Type: Application
    Filed: July 16, 2020
    Publication date: December 2, 2021
    Inventors: Samuel Pedersen, Brian Jaques, David Estrada, Joshua Wood, Chad Husko, Florent Muramutsa
  • Patent number: 11133433
    Abstract: A semiconductor optical device is comprised of a phonon donating material structurally connected to an indirect bandgap material to improve absorption and emission of light in the indirect bandgap material. An excitation energy source provides excitation radiation to the semiconductor optical device to excite electrons in the semiconductor optical device. Phonons from the phonon donating material present in the indirect bandgap material provide a mechanism for increased rates of electron-hole generation and recombination, and electrical leads provide an electrical connection to the semiconductor optical device.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: September 28, 2021
    Assignee: UCHICAGO ARGONNE, LLC
    Inventor: Chad Husko
  • Publication number: 20200264097
    Abstract: A semiconductor optical device is comprised of a phonon donating material structurally connected to an indirect bandgap material to improve absorption and emission of light in the indirect bandgap material. An excitation energy source provides excitation radiation to the semiconductor optical device to excite electrons in the semiconductor optical device. Phonons from the phonon donating material present in the indirect bandgap material provide a mechanism for increased rates of electron-hole generation and recombination, and electrical leads provide an electrical connection to the semiconductor optical device.
    Type: Application
    Filed: January 24, 2020
    Publication date: August 20, 2020
    Inventor: Chad Husko
  • Patent number: 10374385
    Abstract: Hybrid silicon lasers and amplifiers having resonator cavities within a silicon substrate and a two-dimensional material film on the substrate as an optical gain medium are described. The two-dimensional material film may be formed of one or more atomic layers of phosphorene (BP). The number of phosphorene layers may be adjusted to tune the emission wavelength of the hybrid devices.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: August 6, 2019
    Assignees: UCHICAGO ARGONNE, LLC, NORTHWESTERN UNIVERSITY
    Inventors: Chad Husko, Jeff Guest, Mark Hersam, Joohoon Kang, Joshua Wood, Xavier Checoury
  • Publication number: 20190089123
    Abstract: Hybrid silicon lasers and amplifiers having resonator cavities within a silicon substrate and a two-dimensional material film on the substrate as an optical gain medium are described. The two-dimensional material film may be formed of one or more atomic layers of phosphorene (BP). The number of phosphorene layers may be adjusted to tune the emission wavelength of the hybrid devices.
    Type: Application
    Filed: September 15, 2017
    Publication date: March 21, 2019
    Inventor: Chad Husko
  • Patent number: 8989533
    Abstract: Exemplary embodiments of an apparatus, method, and computer readable medium are provided for producing a radiation. For example, a radiation having at least one pulse with a pulse-width of less than approximately 30 picoseconds can be produced using a photonic crystal waveguide arrangement which is (i) specifically structured and sized so as to be placed on an integrated circuit, and (ii) configured to produce the radiation having at least one pulse with a pulse-width of less than approximately 30 picoseconds.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: March 24, 2015
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Alfredo De Rossi, Chad Husko, Sylvain Combrie, Chee Wei Wong
  • Patent number: 8705898
    Abstract: Some embodiments of the disclosed subject matter provide systems, devices, and methods for tuning resonant wavelengths of an optical resonator. Some embodiments of the disclosed subject matter provide systems, devices, and methods for tuning dispersion properties of photonic crystal waveguides. In some embodiments, methods for tuning a resonant wavelength of an optical resonator are provided, the methods including: providing an optical resonator having a surface; determining an initial resonant wavelength emitted by the optical resonator in response to an electromagnetic radiation input; determining a number of layers of dielectric material based on a difference between the initial resonant wavelength and a target resonant wavelength and a predetermined tuning characteristic; and applying the determined number of layers of dielectric material to the surface of the optical resonator to tune the initial resonant wavelength to a tuned resonant wavelength.
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: April 22, 2014
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Chee Wei Wong, Xiaodong Yang, Charlton Chen, Chad Husko
  • Publication number: 20130177275
    Abstract: Exemplary embodiments of an apparatus, method, and computer readable medium are provided for producing a radiation. For example, a radiation having at least one pulse with a pulse-width of less than approximately 30 picoseconds can be produced using a photonic crystal waveguide arrangement which is (i) specifically structured and sized so as to be placed on an integrated circuit, and (ii) configured to produce the radiation having at least one pulse with a pulse-width of less than approximately 30 picoseconds.
    Type: Application
    Filed: July 11, 2012
    Publication date: July 11, 2013
    Inventors: Alfredo De Rossi, Chad Husko, Sylvain Combrie, Chee Wei Wong
  • Publication number: 20100270481
    Abstract: Some embodiments of the disclosed subject matter provide systems, devices, and methods for tuning resonant wavelengths of an optical resonator. Some embodiments of the disclosed subject matter provide systems, devices, and methods for tuning dispersion properties of photonic crystal waveguides. In some embodiments, methods for tuning a resonant wavelength of an optical resonator are provided, the methods including: providing an optical resonator having a surface; determining an initial resonant wavelength emitted by the optical resonator in response to an electromagnetic radiation input; determining a number of layers of dielectric material based on a difference between the initial resonant wavelength and a target resonant wavelength and a predetermined tuning characteristic; and applying the determined number of layers of dielectric material to the surface of the optical resonator to tune the initial resonant wavelength to a tuned resonant wavelength.
    Type: Application
    Filed: June 16, 2008
    Publication date: October 28, 2010
    Applicant: Columbia University
    Inventors: Chee Wei Wong, Xiaodong Yang, Charlton Chen, Chad Husko