Patents by Inventor Chad Joseph Dulkiewicz

Chad Joseph Dulkiewicz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230278134
    Abstract: Embodiments of the disclosure relate to the aligning of a melting beam source in an additive manufacturing (AM) system. Methods of the disclosure may include forming a first test article and a second test article of different shapes on a build plate. The method further includes measuring a vertical scale, vertical alignment, horizontal scale, and an alignment of the melting beam source using the first and second test articles. The method includes determining whether one of the vertical scale, the vertical alignment, the horizontal scale, or the horizontal alignment of the melting beam source is not within a corresponding tolerance of a target specification. If at least one of the vertical scale, the vertical alignment, the horizontal scale, or the horizontal alignment is within the corresponding tolerance, the method includes adjusting the melting beam source of the AM system to align the melting beam source to yield the target specification.
    Type: Application
    Filed: March 4, 2022
    Publication date: September 7, 2023
    Inventors: John Bryan Pourcho, Robert Joseph Rohrssen, Maxwell Evan Miller, James Joseph Murray, III, Michael Ryan Horton, Evan John Dozier, Clay Thomas Griffis, Chad Joseph Dulkiewicz
  • Patent number: 10773340
    Abstract: A metal powder additive manufacturing system and method are disclosed that use increased trace amounts of oxygen to improve physical attributes of an object. The system may include: a processing chamber; a metal powder bed within the processing chamber; a melting element configured to sequentially melt layers of metal powder on the metal powder bed to generate an object; and a control system configured to control a flow of a gas mixture within the processing chamber from a source of inert gas and a source of an oxygen containing material, the gas mixture including the inert gas and oxygen from the oxygen containing material. The method may result in an object having a surface porosity of no greater than approximately 0.1%, and an effective density of greater than approximately 99.9%.
    Type: Grant
    Filed: February 10, 2016
    Date of Patent: September 15, 2020
    Assignee: General Electric Company
    Inventors: Donnell Eugene Crear, Chad Joseph Dulkiewicz, Archie Lee Swanner, Jr.
  • Patent number: 10583532
    Abstract: A metal powder additive manufacturing system and method are disclosed that use increased trace amounts of oxygen to improve physical attributes of an object. The system may include: a processing chamber; a metal powder bed within the processing chamber; a melting element configured to sequentially melt layers of metal powder on the metal powder bed to generate an object; and a control system configured to control a flow of a gas mixture within the processing chamber from a source of inert gas and a source of an oxygen containing material, the gas mixture including the inert gas and oxygen from the oxygen containing material.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: March 10, 2020
    Assignee: General Electric Company
    Inventors: Donnell Eugene Crear, Chad Joseph Dulkiewicz, Archie Lee Swanner, Jr.
  • Patent number: 10377126
    Abstract: Additive manufacturing systems are disclosed. The systems may include a base, and a retaining plate coupled to the base. The retaining plate may include a seat formed in an exposed surface of the retaining plate, and a plurality of pads extending laterally into the seat. The additive manufacturing systems may also include a build plate positioned within the seat and contacting the plurality of pads of the retaining plate. The build plate may include a build surface in substantial planar alignment with the exposed surface of the retaining plate. Additionally, the additive manufacturing systems may include a plurality of build plate retention components positioned in the seat of the retaining plate. Each of the plurality of build plate retention components may be utilized to retain the build plate within the seat of the retaining plate.
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: August 13, 2019
    Assignee: General Electric Company
    Inventors: Chad Joseph Dulkiewicz, Donnell Eugene Crear
  • Patent number: 10286451
    Abstract: Various embodiments include a build plate for additive manufacturing, along with a related system. The build plate may include: a first build surface having at least one recess therein; and at least one block configured to matingly engage with, and disengage with, the at least one recess, the block including a second build surface.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: May 14, 2019
    Assignee: General Electric Company
    Inventors: Kassy Moy Hart, Chad Joseph Dulkiewicz, Archie Lee Swanner, Jr., Russell Dwayne Yates
  • Patent number: 10054530
    Abstract: Particle detection systems are disclosed. The particle detection system may include a conduit configured to receive particles removed from a component, and at least one sensor positioned adjacent the conduit. The at least one sensor may be configured to detect a particle characteristic for the particles in the conduit removed from the component. The particle detection system may also include a particle analysis system in communication with the at least one sensor. The particle analysis system may be configured to analyze the particle characteristic for the particles in the conduit to determine if the component is substantially free of particles.
    Type: Grant
    Filed: August 16, 2016
    Date of Patent: August 21, 2018
    Assignee: General Electric Company
    Inventors: Archie Lee Swanner, Jr., Tiffany Muller Craft, Donnell Eugene Crear, Chad Joseph Dulkiewicz, Kassy Moy Hart
  • Publication number: 20180117854
    Abstract: Various embodiments include a build plate for additive manufacturing, along with a related system. The build plate may include: a first build surface having at least one recess therein; and at least one block configured to matingly engage with, and disengage with, the at least one recess, the block including a second build surface.
    Type: Application
    Filed: November 2, 2016
    Publication date: May 3, 2018
    Inventors: Kassy Moy Hart, Chad Joseph Dulkiewicz, Archie Lee Swanner, JR., Russell Dwayne Yates
  • Publication number: 20180052087
    Abstract: Particle detection systems are disclosed. The particle detection system may include a conduit configured to receive particles removed from a component, and at least one sensor positioned adjacent the conduit. The at least one sensor may be configured to detect a particle characteristic for the particles in the conduit removed from the component. The particle detection system may also include a particle analysis system in communication with the at least one sensor. The particle analysis system may be configured to analyze the particle characteristic for the particles in the conduit to determine if the component is substantially free of particles.
    Type: Application
    Filed: August 16, 2016
    Publication date: February 22, 2018
    Inventors: Archie Lee Swanner, JR., Tiffany Muller Craft, Donnell Eugene Crear, Chad Joseph Dulkiewicz, Kassy Moy Hart
  • Publication number: 20180022044
    Abstract: Additive manufacturing systems are disclosed. The systems may include a base, and a retaining plate coupled to the base. The retaining plate may include a seat formed in an exposed surface of the retaining plate, and a plurality of pads extending laterally into the seat. The additive manufacturing systems may also include a build plate positioned within the seat and contacting the plurality of pads of the retaining plate. The build plate may include a build surface in substantial planar alignment with the exposed surface of the retaining plate. Additionally, the additive manufacturing systems may include a plurality of build plate retention components positioned in the seat of the retaining plate. Each of the plurality of build plate retention components may be utilized to retain the build plate within the seat of the retaining plate.
    Type: Application
    Filed: July 19, 2016
    Publication date: January 25, 2018
    Inventors: Chad Joseph Dulkiewicz, Donnell Eugene Crear
  • Publication number: 20170182598
    Abstract: A metal powder additive manufacturing system and method are disclosed that use increased trace amounts of oxygen to improve physical attributes of an object. The system may include: a processing chamber; a metal powder bed within the processing chamber; a melting element configured to sequentially melt layers of metal powder on the metal powder bed to generate an object; and a control system configured to control a flow of a gas mixture within the processing chamber from a source of inert gas and a source of an oxygen containing material, the gas mixture including the inert gas and oxygen from the oxygen containing material.
    Type: Application
    Filed: December 28, 2015
    Publication date: June 29, 2017
    Inventors: Donnell Eugene Crear, Chad Joseph Dulkiewicz, Archie Lee Swanner, JR.
  • Publication number: 20170182594
    Abstract: A metal powder additive manufacturing system and method are disclosed that use increased trace amounts of oxygen to improve physical attributes of an object. The system may include: a processing chamber; a metal powder bed within the processing chamber; a melting element configured to sequentially melt layers of metal powder on the metal powder bed to generate an object; and a control system configured to control a flow of a gas mixture within the processing chamber from a source of inert gas and a source of an oxygen containing material, the gas mixture including the inert gas and oxygen from the oxygen containing material. The method may result in an object having a surface porosity of no greater than approximately 0.1%, and an effective density of greater than approximately 99.9%.
    Type: Application
    Filed: February 10, 2016
    Publication date: June 29, 2017
    Inventors: Donnell Eugene Crear, Chad Joseph Dulkiewicz, Archie Lee Swanner, JR.