Patents by Inventor Chad M. Althouse

Chad M. Althouse has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11817521
    Abstract: In one aspect, a method includes forming an electrical path between p-type mercury cadmium telluride and a metal layer. The forming of the electrical path includes depositing a layer of polycrystalline p-type silicon directly on to the p-type mercury cadmium telluride and forming the metal layer on the layer of polycrystalline p-type silicon. In another aspect, an apparatus includes an electrical path. The electrical path includes a p-type mercury cadmium telluride layer, a polycrystalline p-type silicon layer in direct contact with the p-type mercury cadmium telluride layer, a metal silicide in direct contact with the polycrystalline p-type silicon layer, and an electrically conductive metal on the metal silicide. In operation, holes, indicative of electrical current on the electrical path, flow from the p-type mercury cadmium telluride layer to the electrically conductive metal.
    Type: Grant
    Filed: September 15, 2021
    Date of Patent: November 14, 2023
    Assignee: Raytheon Company
    Inventors: Andrew Clarke, David R. Rhiger, Chad W. Fulk, Stuart B. Farrell, James Pattison, Jeffrey M. Peterson, Chad M. Althouse
  • Publication number: 20230082114
    Abstract: In one aspect, a method includes forming an electrical path between p-type mercury cadmium telluride and a metal layer. The forming of the electrical path includes depositing a layer of polycrystalline p-type silicon directly on to the p-type mercury cadmium telluride and forming the metal layer on the layer of polycrystalline p-type silicon. In another aspect, an apparatus includes an electrical path. The electrical path includes a p-type mercury cadmium telluride layer, a polycrystalline p-type silicon layer in direct contact with the p-type mercury cadmium telluride layer, a metal silicide in direct contact with the polycrystalline p-type silicon layer, and an electrically conductive metal on the metal silicide. In operation, holes, indicative of electrical current on the electrical path, flow from the p-type mercury cadmium telluride layer to the electrically conductive metal.
    Type: Application
    Filed: September 15, 2021
    Publication date: March 16, 2023
    Applicant: Raytheon Company
    Inventors: Andrew Clarke, David R. Rhiger, Chad W. Fulk, Stuart B. Farrell, James Pattison, Jeffrey M. Peterson, Chad M. Althouse