Patents by Inventor Chad Perrin

Chad Perrin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230157816
    Abstract: A side-deliverable prosthetic heart valve includes a valve frame defining an aperture that extends along a central axis and a flow control component mounted within the aperture and configured to permit selective blood flow therethrough. The prosthetic heart valve has a compressed configuration for side-delivery to a heart of a patient via a delivery catheter. The prosthetic heart valve is configured to transition to an expanded configuration when released from the delivery catheter for seating in a native annulus. The valve frame includes distal, proximal, and septal anchoring elements, each of which is insertable through the native annulus prior to seating the prosthetic heart valve therein. The septal anchoring element is configured to extend below the annulus and contact ventricular septal tissue to stabilize the prosthetic heart valve in the annulus when the prosthetic heart valve is seated in the annulus.
    Type: Application
    Filed: July 8, 2022
    Publication date: May 25, 2023
    Applicant: VDyne, Inc.
    Inventor: Chad PERRIN
  • Patent number: 11617645
    Abstract: A self-expanding wire frame for a pre-configured compressible transcatheter prosthetic cardiovascular valve, a combined inner frame/outer frame support structure for a prosthetic valve, and methods for deploying such a valve for treatment of a patient in need thereof, are disclosed.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: April 4, 2023
    Assignee: Tendyne Holdings, Inc.
    Inventors: Mark Christianson, Chad Perrin, Zachary Tegels, Craig Ekvall, Robert M. Vidlund
  • Publication number: 20230000626
    Abstract: A prosthetic heart valve can include an outer support assembly, an inner valve assembly, which define between them an annular space, and a pocket closure that bounds the annular space to form a pocket in which thrombus can be formed and retained. Alternatively, or additionally, the outer support assembly and the inner valve assembly can be coupled at the ventricle ends of the outer support assembly and the inner valve assembly, with the outer support assembly being relatively more compliant in hoop compression in a central, annulus portion than at the ventricle end, so that the prosthetic valve can seat securely in the annulus while imposing minimal loads on the inner valve assembly that could degrade the performance of the valve leaflets.
    Type: Application
    Filed: September 13, 2022
    Publication date: January 5, 2023
    Applicant: Tendyne Holdings, Inc.
    Inventors: Mark Christianson, Chad Perrin, Zachary Tegels, Craig Ekvall, Robert Vidlund, Son Mai, Michael Evans
  • Publication number: 20220395370
    Abstract: A side-deliverable prosthetic heart valve includes an outer frame and a flow control component. The outer frame defines a central channel that extends along a central axis. The flow control component is disposed within the central channel and coupled to the outer frame. The flow control component has a set of leaflets mounted within an inner frame. The prosthetic valve is configured to be folded along a longitudinal axis and compressed along the central axis to place the prosthetic valve in a compressed configuration for delivery via a delivery catheter. The longitudinal axis is substantially parallel to a lengthwise axis of the delivery catheter when disposed therein. The prosthetic valve transitions to an expanded configuration when released from the delivery catheter. The flow control component elastically deforms from a substantially cylindrical configuration to a substantially flattened configuration when the prosthetic valve is placed in the compressed configuration.
    Type: Application
    Filed: March 7, 2022
    Publication date: December 15, 2022
    Applicant: VDyne, Inc.
    Inventors: Robert VIDLUND, Chad PERRIN, Neelakantan SAIKRISHNAN, Mark CHRISTIANSON
  • Patent number: 11471281
    Abstract: A prosthetic heart valve can include an outer support assembly, an inner valve assembly, which define between them an annular space, and a pocket closure that bounds the annular space to form a pocket in which thrombus can be formed and retained. Alternatively, or additionally, the outer support assembly and the inner valve assembly can be coupled at the ventricle ends of the outer support assembly and the inner valve assembly, with the outer support assembly being relatively more compliant in hoop compression in a central, annulus portion than at the ventricle end, so that the prosthetic valve can seat securely in the annulus while imposing minimal loads on the inner valve assembly that could degrade the performance of the valve leaflets.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: October 18, 2022
    Assignee: Tendyne Holdings, Inc.
    Inventors: Mark Christianson, Chad Perrin, Zachary Tegels, Craig Ekvall, Robert Vidlund, Son Mai, Michael Evans
  • Publication number: 20220280296
    Abstract: A side-deliverable prosthetic heart valve includes an outer frame and a flow control component. The outer frame has a supra-annular region, a subannular region, and a transannular region therebetween. The flow control component is mounted to the outer frame such that at least a portion of the flow control component is disposed in the transannular region. The prosthetic valve has a delivery configuration for side-delivery via a delivery catheter and is expandable when the prosthetic valve is released from the delivery catheter. The subannular region of the outer frame is disposable in a first configuration as the prosthetic valve is seated in an annulus of a native heart valve and is transitionable to a second configuration after the prosthetic valve is seated in the annulus of the native heart valve.
    Type: Application
    Filed: May 23, 2022
    Publication date: September 8, 2022
    Applicant: VDyne, Inc.
    Inventors: Mark CHRISTIANSON, Robert VIDLUND, Neelakantan SAIKRISHNAN, Scott KRAMER, Chad PERRIN, Lucas HARDER
  • Patent number: 11337807
    Abstract: A side-deliverable prosthetic heart valve includes an outer frame and a flow control component. The outer frame has a supra-annular region, a subannular region, and a transannular region therebetween. The flow control component is mounted to the outer frame such that at least a portion of the flow control component is disposed in the transannular region. The prosthetic valve has a delivery configuration for side-delivery via a delivery catheter and is expandable when the prosthetic valve is released from the delivery catheter. The subannular region of the outer frame is disposable in a first configuration as the prosthetic valve is seated in an annulus of a native heart valve and is transitionable to a second configuration after the prosthetic valve is seated in the annulus of the native heart valve.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: May 24, 2022
    Assignee: VDyne, Inc.
    Inventors: Mark Christianson, Robert Vidlund, Neelakantan Saikrishnan, Scott Kramer, Chad Perrin, Lucas Harder
  • Patent number: 11331186
    Abstract: A side-deliverable prosthetic heart valve includes an outer frame and a flow control component. The outer frame has a supra-annular region, a subannular region, and a transannular region therebetween. The flow control component is mounted to the outer frame such that at least a portion of the flow control component is disposed in the transannular region. The prosthetic valve has a delivery configuration for side-delivery via a delivery catheter and is expandable when the prosthetic valve is released from the delivery catheter. The subannular region of the outer frame is disposable in a first configuration as the prosthetic valve is seated in an annulus of a native heart valve and is transitionable to a second configuration after the prosthetic valve is seated in the annulus of the native heart valve.
    Type: Grant
    Filed: February 4, 2021
    Date of Patent: May 17, 2022
    Assignee: VDyne, Inc.
    Inventors: Mark Christianson, Robert Vidlund, Neelakantan Saikrishnan, Scott Kramer, Chad Perrin, Lucas Harder
  • Patent number: 11273032
    Abstract: A side-deliverable prosthetic heart valve includes an outer frame and a flow control component. The outer frame defines a central channel that extends along a central axis. The flow control component is disposed within the central channel and coupled to the outer frame. The flow control component has a set of leaflets mounted within an inner frame. The prosthetic valve is configured to be folded along a longitudinal axis and compressed along the central axis to place the prosthetic valve in a compressed configuration for delivery via a delivery catheter. The longitudinal axis is substantially parallel to a lengthwise axis of the delivery catheter when disposed therein. The prosthetic valve transitions to an expanded configuration when released from the delivery catheter. The flow control component elastically deforms from a substantially cylindrical configuration to a substantially flattened configuration when the prosthetic valve is placed in the compressed configuration.
    Type: Grant
    Filed: April 5, 2021
    Date of Patent: March 15, 2022
    Assignee: VDyne, Inc.
    Inventors: Mark Christianson, Robert Vidlund, Neelakantan Saikrishnan, Chad Perrin
  • Patent number: 11234813
    Abstract: A side-deliverable prosthetic heart valve includes a valve frame defining an aperture that extends along a central axis and a flow control component mounted within the aperture and configured to permit selective blood flow therethrough. The prosthetic heart valve has a compressed configuration for side-delivery to a heart of a patient via a delivery catheter. The prosthetic heart valve is configured to transition to an expanded configuration when released from the delivery catheter for seating in a native annulus. The valve frame includes distal, proximal, and septal anchoring elements, each of which is insertable through the native annulus prior to seating the prosthetic heart valve therein. The septal anchoring element is configured to extend below the annulus and contact ventricular septal tissue to stabilize the prosthetic heart valve in the annulus when the prosthetic heart valve is seated in the annulus.
    Type: Grant
    Filed: January 21, 2021
    Date of Patent: February 1, 2022
    Assignee: VDyne, Inc.
    Inventor: Chad Perrin
  • Patent number: 11185409
    Abstract: The invention relates to a transcatheter heart valve replacement (A61F2/2412), and in particular a side delivered transcatheter prosthetic heart valve having a collapsible inner flow control component, and an outer annular support frame having compressible wire cells that facilitate folding flat along the z-axis and compressing the valve vertically along the y-axis, or orthogonally to the central axis of the flow control component, allowing a very large diameter valve to be delivered and deployed to the tricuspid valve from the inferior vena cava or superior vena cava, or trans-atrially to the mitral valve, the valve having a height of about 5-60 mm and a diameter of about 25-80 mm, without requiring an oversized diameter catheter and without requiring delivery and deployment from a catheter at an acute angle of approach.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: November 30, 2021
    Assignee: VDyne, Inc.
    Inventors: Mark Christianson, Robert Vidlund, Neelakantan Saikrishnan, Chad Perrin
  • Publication number: 20210353412
    Abstract: A side-deliverable prosthetic heart valve includes an outer frame and a flow control component. The outer frame has a supra-annular region, a subannular region, and a transannular region therebetween. The flow control component is mounted to the outer frame such that at least a portion of the flow control component is disposed in the transannular region. The prosthetic valve has a delivery configuration for side-delivery via a delivery catheter and is expandable when the prosthetic valve is released from the delivery catheter. The subannular region of the outer frame is disposable in a first configuration as the prosthetic valve is seated in an annulus of a native heart valve and is transitionable to a second configuration after the prosthetic valve is seated in the annulus of the native heart valve.
    Type: Application
    Filed: July 29, 2021
    Publication date: November 18, 2021
    Applicant: VDyne, Inc.
    Inventors: Mark CHRISTIANSON, Robert VIDLUND, Neelakantan SAIKRISHNAN, Scott KRAMER, Chad PERRIN, Lucas HARDER
  • Publication number: 20210330459
    Abstract: The invention relates to an anchor hook and methods of using the same for subannular anchoring of a transcatheter heart valve replacement, and in particular for an orthogonally delivered (side-delivered) transcatheter prosthetic heart valve having a annular support frame having compressible wire cells that facilitate rolling and folding the valve length-wise, or orthogonally to the central axis of the flow control component, allowing a very large diameter valve to be delivered and deployed to the mitral or tricuspid valve from the inferior vena cava or superior vena cava, or trans-septally to the mitral valve, the valve having a height of about 5-60 mm and a diameter of about 25-80 mm, without requiring an oversized diameter catheter and without requiring a delivery catheter to bend 90 degrees during deployment.
    Type: Application
    Filed: July 9, 2021
    Publication date: October 28, 2021
    Applicant: VDyne, Inc.
    Inventors: Mark CHRISTIANSON, Robert VIDLUND, Chad PERRIN, Craig EKVALL
  • Publication number: 20210244536
    Abstract: A side-deliverable prosthetic heart valve includes an outer frame and a flow control component. The outer frame defines a central channel that extends along a central axis. The flow control component is disposed within the central channel and coupled to the outer frame. The flow control component has a set of leaflets mounted within an inner frame. The prosthetic valve is configured to be folded along a longitudinal axis and compressed along the central axis to place the prosthetic valve in a compressed configuration for delivery via a delivery catheter. The longitudinal axis is substantially parallel to a lengthwise axis of the delivery catheter when disposed therein. The prosthetic valve transitions to an expanded configuration when released from the delivery catheter. The flow control component elastically deforms from a substantially cylindrical configuration to a substantially flattened configuration when the prosthetic valve is placed in the compressed configuration.
    Type: Application
    Filed: April 5, 2021
    Publication date: August 12, 2021
    Applicant: VDyne, Inc.
    Inventors: Mark Christianson, Robert Vidlund, Neelakantan Saikrishnan, Chad Perrin
  • Publication number: 20210220134
    Abstract: A side-deliverable prosthetic heart valve includes an outer frame and a flow control component. The outer frame has a supra-annular region, a subannular region, and a transannular region therebetween. The flow control component is mounted to the outer frame such that at least a portion of the flow control component is disposed in the transannular region. The prosthetic valve has a delivery configuration for side-delivery via a delivery catheter and is expandable when the prosthetic valve is released from the delivery catheter. The subannular region of the outer frame is disposable in a first configuration as the prosthetic valve is seated in an annulus of a native heart valve and is transitionable to a second configuration after the prosthetic valve is seated in the annulus of the native heart valve.
    Type: Application
    Filed: February 4, 2021
    Publication date: July 22, 2021
    Applicant: VDyne, Inc.
    Inventors: Mark CHRISTIANSON, Robert VIDLUND, Neelakantan SAIKRISHNAN, Scott KRAMER, Chad PERRIN, Lucas HARDER
  • Publication number: 20210220126
    Abstract: A side-deliverable prosthetic heart valve includes a valve frame defining an aperture that extends along a central axis and a flow control component mounted within the aperture and configured to permit selective blood flow therethrough. The prosthetic heart valve has a compressed configuration for side-delivery to a heart of a patient via a delivery catheter. The prosthetic heart valve is configured to transition to an expanded configuration when released from the delivery catheter for seating in a native annulus. The valve frame includes distal, proximal, and septal anchoring elements, each of which is insertable through the native annulus prior to seating the prosthetic heart valve therein. The septal anchoring element is configured to extend below the annulus and contact ventricular septal tissue to stabilize the prosthetic heart valve in the annulus when the prosthetic heart valve is seated in the annulus.
    Type: Application
    Filed: January 21, 2021
    Publication date: July 22, 2021
    Applicant: VDyne, Inc.
    Inventor: Chad PERRIN
  • Publication number: 20210186693
    Abstract: A delivery system for side-delivery of a prosthetic valve includes a compression device defining a lumen having a first perimeter at a proximal end that is larger than a second perimeter of the lumen at a distal end. A loading device is coupleable to the compression device and defines a lumen having substantially the second perimeter. A distal end of the loading device includes a first gate that is movable between an open state and a closed state to at least partially occlude the lumen of the loading device. A delivery device defines a lumen having substantially the second perimeter. A proximal end of the delivery device is coupleable to the distal end of the loading device and includes a second gate movable between an open state and a closed state to at least partially occlude the lumen of the delivery device.
    Type: Application
    Filed: March 5, 2021
    Publication date: June 24, 2021
    Applicant: VDyne, Inc.
    Inventors: Robert VIDLUND, I, Mark Christianson, Neelakantan Saikrishnan, Scott Kramer, Chad Perrin, Lucas Harder, David Holtan, Craig Ekvall, Cameron Vidlund
  • Publication number: 20200345487
    Abstract: Apparatus and methods are described herein for use in the transvascular delivery and deployment of a prosthetic mitral valve. In some embodiments, a method includes inverting an outer frame of a prosthetic mitral valve when the valve is in a biased expanded configuration. After inverting the outer frame, the prosthetic mitral valve is inserted into a lumen of a delivery sheath such that the mitral valve is moved to a collapsed configuration. The distal end portion of the delivery sheath is inserted into a left atrium of a heart. The prosthetic mitral valve is moved distally out of the delivery sheath such that the inverted outer frame reverts and the prosthetic mitral valve assumes its biased expanded configuration. In some embodiments, actuation wires are used to assist in the reversion of the outer frame. The prosthetic mitral valve is then positioned within a mitral annulus of the heart.
    Type: Application
    Filed: July 20, 2020
    Publication date: November 5, 2020
    Applicant: Tendyne Holdings, Inc.
    Inventors: Mark Christianson, Zachary R. Vidlund, Robert Vidlund, Igor Kovalsky, William Peckels, Michael Evans, Chad Perrin, John F. Otte, Son Mai
  • Patent number: 10786351
    Abstract: Apparatus and methods are described herein for use in the transvascular delivery and deployment of a prosthetic mitral valve. In some embodiments, a method includes inverting an outer frame of a prosthetic mitral valve when the valve is in a biased expanded configuration. After inverting the outer frame, the prosthetic mitral valve is inserted into a lumen of a delivery sheath such that the mitral valve is moved to a collapsed configuration. The distal end portion of the delivery sheath is inserted into a left atrium of a heart. The prosthetic mitral valve is moved distally out of the delivery sheath such that the inverted outer frame reverts and the prosthetic mitral valve assumes its biased expanded configuration. In some embodiments, actuation wires are used to assist in the reversion of the outer frame. The prosthetic mitral valve is then positioned within a mitral annulus of the heart.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: September 29, 2020
    Assignee: Tendyne Holdings, Inc.
    Inventors: Mark Christianson, Zachary Vidlund, Robert Vidlund, Igor Kovalsky, William Peckels, Michael Evans, Chad Perrin, John F. Otte, Son Mai
  • Publication number: 20200237506
    Abstract: The invention relates to a transcatheter heart valve replacement (A61F2/2412), and in particular a side delivered transcatheter prosthetic heart valve having a collapsible inner flow control component, and an outer annular support frame having compressible wire cells that facilitate folding flat along the z-axis and compressing the valve vertically along the y-axis, or orthogonally to the central axis of the flow control component, allowing a very large diameter valve to be delivered and deployed to the tricuspid valve from the inferior vena cava or superior vena cava, or trans-atrially to the mitral valve, the valve having a height of about 5-60 mm and a diameter of about 25-80 mm, without requiring an oversized diameter catheter and without requiring delivery and deployment from a catheter at an acute angle of approach.
    Type: Application
    Filed: June 27, 2019
    Publication date: July 30, 2020
    Inventors: Mark Christianson, Robert Vidlund, Neelakantan Saikrishnan, Chad Perrin