Patents by Inventor Chad Tyler

Chad Tyler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240165445
    Abstract: A temperature monitoring apparatus includes a temperature sensor and a control circuit. The temperature sensor detects a temperature of a piping system, such as a temperature of water in the piping system. The control circuit includes one or more processors and a memory storing instructions that, when executed by the one or more processors, cause the control circuit to determine whether water in the piping system is expected to freeze based on the indication of the temperature, predict whether a valve tripping event is expected to occur based on determining that the water in the piping system is expected to freeze, and in response to predicting that the valve tripping event is expected to occur, provide a prediction that the valve tripping event is expected to occur for remedial action.
    Type: Application
    Filed: December 27, 2023
    Publication date: May 23, 2024
    Applicant: Tyco Fire Products LP
    Inventors: Chad A. Goyette, Jeremy Tyler Cogswell
  • Patent number: 11990905
    Abstract: In a general aspect, a quantum logic gate is performed in a quantum computing system. In some cases, a pair of qubits are defined in a quantum processor; the pair of qubits can include a first qubit defined by a first qubit device in the quantum processor and a second qubit defined by a tunable qubit device in the quantum processor. A quantum logic gate can be applied to the pair of qubits by communicating a control signal to a control line coupled to the tunable qubit device. The control signal can be configured to modulate a transition frequency of the tunable qubit device at a modulation frequency, and the modulation frequency can be determined based on a transition frequency of the first qubit device.
    Type: Grant
    Filed: April 26, 2023
    Date of Patent: May 21, 2024
    Assignee: Rigetti & Co, LLC
    Inventors: Eyob A. Sete, Nicolas Didier, Marcus Palmer da Silva, Chad Tyler Rigetti, Matthew J. Reagor, Shane Arthur Caldwell, Nikolas Anton Tezak, Colm Andrew Ryan, Sabrina Sae Byul Hong, Prasahnt Sivarajah, Alexander Papageorge, Deanna Margo Abrams
  • Patent number: 11977138
    Abstract: Some implementations provide an MRI system that includes: a housing having a bore accommodating a portion of a subject; a main magnet enclosed by said housing and configured to generate a substantially uniform magnet field within the bore; a gradient sub-system to provide perturbations to the substantially uniform magnet field; a flexible coil assembly configured to (i) receive radio frequency (RF) signals from the subject in response to the portion of the subject being scanned, and (ii) generate and apply B0 shimming to improve a field homogeneity of the substantially uniform magnetic field; and a control unit configured to: drive the gradient sub-system using a gradient waveform; and receive measurement results responsive to the gradient waveform such that a coupling between the gradient sub-system and the flexible coil assembly is determined and subsequently reduced in response to the determined coupling exceeding a pre-determined threshold.
    Type: Grant
    Filed: February 12, 2021
    Date of Patent: May 7, 2024
    Inventors: Chad Tyler Harris, Geron André Bindseil
  • Patent number: 11977113
    Abstract: In a general aspect, a quantum error-correction technique includes applying a first set of two-qubit gates to qubits in a lattice cell, and applying a second, different set of two-qubit gates to the qubits in the lattice cell. The qubits in the lattice cell include data qubits and ancilla qubits, and the ancilla qubits reside between respective nearest-neighbor pairs of the data qubits. After the first and second sets of two-qubit gates have been applied, measurement outcomes of the ancilla qubits are obtained, and the parity of the measurement outcomes is determined.
    Type: Grant
    Filed: February 6, 2023
    Date of Patent: May 7, 2024
    Assignee: Rigetti & Co, LLC
    Inventors: William J. Zeng, Eyob A. Sete, Chad Tyler Rigetti
  • Patent number: 11977956
    Abstract: In a general aspect, calibration is performed in a quantum computing system. In some cases, domains of a quantum computing system are identified, where the domains include respective domain control subsystems and respective subsets of quantum circuit devices in a quantum processor of the quantum computing system. Sets of measurements are obtained from one of the domains and stored in memory. Device characteristics of the quantum circuit devices of the domain are obtained based on the set of measurements, and the device characteristics are stored in a memory of the control system. Quantum logic control parameters for the subset of quantum circuit devices of the domain are obtained based on the set of measurements and stored in memory.
    Type: Grant
    Filed: January 18, 2023
    Date of Patent: May 7, 2024
    Assignee: Rigetti & Co, LLC
    Inventors: Benjamin Jacob Bloom, Shane Arthur Caldwell, Michael James Curtis, Matthew J. Reagor, Chad Tyler Rigetti, Eyob A. Sete, William J. Zeng, Peter Jonathan Karalekas, Nikolas Anton Tezak, Nasser Alidoust
  • Publication number: 20240146307
    Abstract: In a general aspect, a quantum logic gate is performed in a quantum computing system. In some cases, a pair of qubits are defined in a quantum processor; the pair of qubits can include a first qubit defined by a first qubit device in the quantum processor and a second qubit defined by a tunable qubit device in the quantum processor. A quantum logic gate can be applied to the pair of qubits by communicating a control signal to a control line coupled to the tunable qubit device. The control signal can be configured to modulate a transition frequency of the tunable qubit device at a modulation frequency, and the modulation frequency can be determined based on a transition frequency of the first qubit device.
    Type: Application
    Filed: April 26, 2023
    Publication date: May 2, 2024
    Applicant: Rigetti & Co, LLC
    Inventors: Eyob A. Sete, Nicolas Didier, Marcus Palmer da Silva, Chad Tyler Rigetti, Matthew J. Reagor, Shane Arthur Caldwell, Nikolas Anton Tezak, Colm Andrew Ryan, Sabrina Sae Byul Hong, Prasahnt Sivarajah, Alexander Papageorge, Deanna Margo Abrams
  • Publication number: 20240123237
    Abstract: A device for implantation in a patient may include an electrode arrays configured to apply at least one electrical pulse to an excitable tissue, the electrode array including at least one electrode; connector contacts, each integrally wired to a particular electrode array, each configured to drive the at least one electrode of the particular electrode array integrally wired thereto with the at least one electrical pulse; a first antenna configured to: receive, from a second antenna and through electrical radiative coupling, an input signal containing electrical energy, the second antenna located outside the patient's body; and one or more circuits electrically connected to the first antenna and the connector contacts, the circuits configured to: create the one or more electrical pulses suitable for stimulation of the excitable tissue by using the electrical energy contained in the input signal; and supply the one or more electrical pulses to the connector contacts.
    Type: Application
    Filed: December 21, 2023
    Publication date: April 18, 2024
    Inventors: Laura Tyler Perryman, Chad David Andresen
  • Patent number: 11954562
    Abstract: In a general aspect, a quantum computing method is described. In some aspects, a control system in a quantum computing system assigns subsets of qubit devices in a quantum processor to respective cores. The control system identifies boundary qubit devices residing between the cores in the quantum processor and generates control sequences for each respective core. A signal delivery system in communication with the control system and the quantum processor receives control signals to execute the control sequences, and the control signals are applied to the respective cores in the quantum processor.
    Type: Grant
    Filed: December 13, 2021
    Date of Patent: April 9, 2024
    Assignee: Rigetti & Co, LLC
    Inventors: Matthew J. Reagor, William J. Zeng, Michael Justin Gerchick Scheer, Benjamin Jacob Bloom, Nikolas Anton Tezak, Nicolas Didier, Christopher Butler Osborn, Chad Tyler Rigetti
  • Patent number: 11941482
    Abstract: In some aspects, a heterogeneous computing system includes a quantum processor unit and a classical processor unit. In some instances, variables defined by a computer program are stored in a classical memory in the heterogeneous computing system. The computer program is executed in the heterogeneous computing system by operation of the quantum processor unit and the classical processor unit. Instructions are generated for the quantum processor by a host processor unit based on values of the variables stored in the classical memory. The instructions are configured to cause the quantum processor unit to perform a data processing task defined by the computer program. The values of the variables are updated in the classical memory based on output values generated by the quantum processor unit. The classical processor unit processes the updated values of the variables.
    Type: Grant
    Filed: March 9, 2021
    Date of Patent: March 26, 2024
    Assignee: Rigetti & Co, LLC
    Inventors: Chad Tyler Rigetti, William J. Zeng, Dane Christoffer Thompson
  • Patent number: 11938321
    Abstract: An antenna assembly includes a metal layer configured to emit linearly polarized electromagnetic energy to a receiving antenna implanted underneath a subject's skin; and a feed port configured to connect the antenna assembly to a signal generator such that the antenna assembly receives an input signal from the signal generator and then transmits the input signal to the receiving dipole antenna, wherein the antenna assembly is less than 200 um in thickness, and wherein the metal layer is operable as a dipole antenna with a reflection ratio of at least 6 dB, the reflection ratio corresponding to a ratio of a transmission power of the antenna assembly in transmitting the input signal and a reflection power seen by the antenna assembly resulting from electromagnetic emission of the input signal.
    Type: Grant
    Filed: December 29, 2022
    Date of Patent: March 26, 2024
    Assignee: CURONIX LLC
    Inventors: Chad David Andresen, Richard LeBaron, Laura Tyler Perryman
  • Publication number: 20240093224
    Abstract: The present disclosure provides maize plants exhibiting broad spectrum resistance to Northern Leaf Blight (NLB). Maize plants with multiple NLB resistance loci located in cis linkage on chromosome 8 are provided. Compositions, including novel polymorphic markers and methods for producing, breeding, identifying, and selecting plants or germplasm with a disease resistance phenotype are further provided.
    Type: Application
    Filed: November 22, 2023
    Publication date: March 21, 2024
    Inventors: Bart Willem Brugmans, Jonathan Tyler Eckard, David Elon Fisher, Tim J. Gustafson, Chad Kramer
  • Patent number: 11931997
    Abstract: A structured tissue belt assembly including a supporting layer, a non-woven web contacting layer, and one or more laser welds that attach the bottom surface of the web contacting layer to the top surface of the supporting layer. The structured tissue belt assembly allows for air flow in x, y and z directions. In exemplary embodiments, the structured tissue belt assembly has an embedment distance between the supporting layer and the web contacting layer of 0.05 mm to 0.60 mm and a peel force between the web contacting layer and the supporting layer of at least 650 gf/inch.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: March 19, 2024
    Assignee: First Quality Tissue Se, LLC
    Inventors: Chad Martin, Robbie Edmonds, Allan Manninen, Chi Zhang, Hongjian Zhou, James E. Sealey, II, Byrd Tyler Miller, IV, Marc Paul Begin, Justin S. Pence
  • Publication number: 20240061059
    Abstract: A system and method for enhancing magnetic resonance imaging is described. The method includes a declarative style of pulse sequence design that incorporates explicit objectives. Each objective includes the function and context of the waveform; environmental and contextual data; time segment durations; spatial magnetic field profiles of the encoding electromagnets; and performance metrics.
    Type: Application
    Filed: February 16, 2023
    Publication date: February 22, 2024
    Applicant: SYNAPTIVE MEDICAL INC.
    Inventors: Chad Tyler HARRIS, Geron Andrè BINDSEIL, Philip J. BEATTY, Andrew Thomas CURTIS
  • Patent number: 11900212
    Abstract: In a general aspect, a quantum process for execution by a quantum processor is generated. In some instances, test data representing a test output of a quantum process are obtained. The test data are obtained based on a value assigned to a variable parameter of the quantum process. An objective function is evaluated based on the test data, and an updated value is assigned to the variable parameter based on the evaluation of the objective function. The quantum process is provided for execution by a quantum processor, and the quantum process provided for execution has the updated value assigned to the variable parameter.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: February 13, 2024
    Assignee: Rigetti & Co, LLC
    Inventors: William J. Zeng, Chad Tyler Rigetti
  • Patent number: 11893454
    Abstract: In a general aspect, information is encoded in data qubits in a three-dimensional device lattice. The data qubits reside in multiple layers of the three-dimensional device lattice, and each layer includes a respective two-dimensional device lattice. A three-dimensional color code is applied in the three-dimensional device lattice to detect errors in the data qubits residing in the multiple layers. A two-dimensional color code is applied in the two-dimensional device lattice in each respective layer to detect errors in one or more of the data qubits residing in the respective layer.
    Type: Grant
    Filed: May 19, 2022
    Date of Patent: February 6, 2024
    Assignee: Rigetti & Co, LLC
    Inventors: William J. Zeng, Chad Tyler Rigetti
  • Patent number: 11860254
    Abstract: A magnetic resonance imaging (MRI) system includes a set of magnet coils for generating a magnetic field. The set of magnet coils are composed of a superconducting material. The system further includes a mechanical cryocooler in thermal contact with the set of magnet coils and operable to reduce and maintain a temperature of the set of magnet coils below a transition temperature of the superconducting material, and an energy storage device coupled to the set of magnet coils. The energy storage device may be capable of receiving and storing energy dissipated from the set of magnet coils during rapid shutdown of the set of magnet coils. The system may also include a controller coupled to the energy storage device. The controller may be programmed to recharge the set of magnet coils using the energy stored in the energy storage device during the rapid shutdown of the set of magnet coils.
    Type: Grant
    Filed: July 1, 2022
    Date of Patent: January 2, 2024
    Inventors: Jeff Alan Stainsby, Chad Tyler Harris, Alexander Gyles Panther
  • Publication number: 20230394342
    Abstract: In a general aspect, calibration is performed in a quantum computing system. In some cases, domains of a quantum computing system are identified, where the domains include respective domain control subsystems and respective subsets of quantum circuit devices in a quantum processor of the quantum computing system. Sets of measurements are obtained from one of the domains and stored in memory. Device characteristics of the quantum circuit devices of the domain are obtained based on the set of measurements, and the device characteristics are stored in a memory of the control system. Quantum logic control parameters for the subset of quantum circuit devices of the domain are obtained based on the set of measurements and stored in memory.
    Type: Application
    Filed: January 18, 2023
    Publication date: December 7, 2023
    Applicant: Rigetti & Co, LLC
    Inventors: Benjamin Jacob Bloom, Shane Arthur Caldwell, Michael James Curtis, Matthew J. Reagor, Chad Tyler Rigetti, Eyob A. Sete, William J. Zeng, Peter Jonathan Karalekas, Nikolas Anton Tezak, Nasser Alidoust
  • Patent number: 11821970
    Abstract: A coil apparatus and methods for magnetic resonance imaging involving a wire winding, the wire winding having at least one of: a hollow cross-section wire and a solid cross-section wire, the solid cross-section wire having at least one of: a solid small cross-section wire and a solid large cross-section wire, the solid large cross-section wire having a thickness greater than that of the solid small cross-section wire, and the solid small cross-section wire disposed in one of adjacent and proximate at least one of the hollow cross-section wire and the solid large cross-section wire, whereby at least one of current density, winding density, and heat extraction are increasable.
    Type: Grant
    Filed: December 20, 2021
    Date of Patent: November 21, 2023
    Inventors: Geron André Bindseil, Ian Robert Oliphant Connell, William Bradfield Handler, Chad Tyler Harris
  • Patent number: 11802923
    Abstract: Systems and methods for imaging a subject with a magnetic resonance imaging system using magnetic field gradients generated by one or more gradient coils operating with gradient coil settings, such as gradient amplitudes and gradient slew rates, above a threshold at which peripheral nerve stimulation is likely to be induced in the subject. A dielectric assembly is positioned adjacent a skin surface of the subject such that the dielectric assembly attenuates the local electric fields induced by the magnetic field gradients, which would be likely to induce PNS when the dielectric assembly is not arranged adjacent the skin surface of the subject. As a result of the dielectric assembly placed adjacent the skin surface of the subject, the gradient coil settings can be increased above the threshold without inducing PNS in the subject.
    Type: Grant
    Filed: August 15, 2022
    Date of Patent: October 31, 2023
    Inventors: Chad Tyler Harris, Geron André Bindseil, William Bradfield Handler
  • Publication number: 20230333181
    Abstract: A system and method for compensation of radiofrequency (RF) spatial encoding misalignment errors due to gradient non-linearity in magnetic resonance imaging is described. The true magnetic field produced by the gradient coils in space are taken into account in order to encode the appropriate frequency band and offset of the RF pulse corresponding to the desired spatial encoding position and thickness. This method is applicable to any positionally (frequency) encoded radiofrequency (RF) pulses including slice or slab excitation pulses, inversion pulses, spin echo (refocusing) pulses and spatial saturation pulses.
    Type: Application
    Filed: April 14, 2023
    Publication date: October 19, 2023
    Applicant: SYNAPTIVE MEDICAL INC.
    Inventors: Chad Tyler HARRIS, Andrew Thomas CURTIS