Patents by Inventor Chad Tyler HARRIS

Chad Tyler HARRIS has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180031654
    Abstract: A system and method of acquiring an image at a magnetic resonance imaging (MRI) system is provided. Accordingly, an analog signal based on a pulse sequence and a first gain is obtained. The analog signal is converted into a digitized signal. A potential quantization error is detected in the digitized signal based on a boundary. When the detection is affirmative, a replacement analog signal based on the pulse sequence is received. At least one portion of the replacement analog signal can be based on an adjusted gain. The adjusted gain is a factor of the first gain. The replacement analog signal is digitized into a replacement digitized signal. At least one portion of the replacement digitized signal corresponding to the at least one portion of the replacement analog signal is adjusted based on a reversal of the factor.
    Type: Application
    Filed: September 15, 2017
    Publication date: February 1, 2018
    Inventors: Cameron Anthony PIRON, Alexander Gyles PANTHER, Chad Tyler HARRIS, Stephen B.E. MCFADYEN
  • Patent number: 9880251
    Abstract: Disclosed herein are cerebrospinal diffusion phantoms which include a housing having a shape and size configured for insertion into a magnetic resonance coil in one or more preselected poses. A scaffold support structure is mounted on an interior of said housing and a plurality of elongated diffusion mimicking members supported on the support array. The elongated diffusion mimicking members are affixed to the scaffold support structure such that elongated diffusion mimicking members extend in directions needed to substantially emulate a 3 dimensional arrangement of cerebrospinal diffusion fiber tracts in a living organism; as well as modules for elimination of resolution based-bias, angular accuracy evaluation, diffusion rate calibration, and quality assurance image referencing. Each elongated diffusion mimicking member includes an aqueous component which can undergo diffusion along the elongated diffusion mimicking member.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: January 30, 2018
    Assignee: Synaptive Medical (Barbados) Inc.
    Inventors: Fergal Kerins, Timotheus Anton Gmeiner, Jeff Alan Stainsby, Chad Tyler Harris, Sheryl Rae Thingvold, Gregory Allan Whitton
  • Publication number: 20180024211
    Abstract: A magnetic resonance imaging (MRI) system is provided. The system includes a main field magnet generating a main magnetic field B0. Moreover, the system further includes an integrated magnet device. The integrated magnet device has field-shift coils including primary field-shift coils and field-shift shield coils, the primary field shift coils being placed closer to an object to be imaged within the imaging volume than the field-shift shield coils. The gradient coils are placed between the primary field-shift coils and field-shift shield coils. At least one substrate layer is included to provide mechanical support for the field-shift coils and the gradient coils.
    Type: Application
    Filed: February 23, 2015
    Publication date: January 25, 2018
    Inventors: Geron Andre BINDSEIL, Chad Tyler HARRIS, William Bradfield HANDLER, Blaine Alexander CHRONIK
  • Publication number: 20180024212
    Abstract: A method for operating a magnetic resonance imaging (MRI) system that includes: accessing data indicating a first region for imaging a portion of a subject, the portion being placed in a main magnet of the MRI system and the main magnet generating a magnetic field; selecting, from a group of available shimming coils, a first subset of shimming coils arranged and configured such that, when the shimming coils in the first subset are driven, a homogeneity of the magnetic field at the first region is increased; and driving the shimming coils in the selected first subset of shimming coils without driving other shimming coils in the group of available shimming coils such that the homogeneity of the magnetic field at the first region increases relative to the homogeneity of the magnetic field at the first region when the shimming coils of the selected first subset are not driven.
    Type: Application
    Filed: April 10, 2015
    Publication date: January 25, 2018
    Applicant: Synaptive Medical (Barbados) Inc.
    Inventors: Chad Tyler Harris, Philip J. Beatty, Alexander Gyles Panther, Jeff Alan Stainsby, David Mark Deschenes
  • Publication number: 20180017644
    Abstract: A magnetic resonance imaging (MRI) system is provided. The system includes a main field magnet generating a main magnetic field B0. Moreover, the system further includes an integrated magnet device. The integrated magnet device has field-shift shield coils and gradient coils. The MRI system further includes a removable insert comprising field-shift shield coils. At least one substrate layer is included in the integrated magnet device to provide mechanical support for the field-shift coils and the gradient coils. Moreover, a cooling mechanism is provided to cool at least some of the magnets.
    Type: Application
    Filed: February 23, 2015
    Publication date: January 18, 2018
    Inventors: Geron BINDSEIL, Chad Tyler HARRIS, William HANDLER, Blaine CHRONIK
  • Publication number: 20170356971
    Abstract: A method of manufacturing electromagnet coils for use in a magnetic resonance imaging (MRI) system is provided. The electromagnet coils are located in a non-homogeneous external magnetic field. The method comprises forming a coil representation of a coil surface for the electromagnet coils; setting limits for performance metrics for the electromagnet coils including a magnetic field-shape metric and at least one of an external torque metric and an external force metric, the external torque metric and the external force metric based, respectively, at least in part on a torque and a force exerted on the electromagnet coil by the non-homogeneous external magnetic field; forming a performance functional, based on the coil representation and the performance metrics, for generating a current density pattern over the coil surface; optimizing the performance functional and generating a current density pattern based on the optimized performance functional; and obtaining coil windings.
    Type: Application
    Filed: December 9, 2014
    Publication date: December 14, 2017
    Inventors: Geron BINDSEIL, Chad Tyler HARRIS
  • Patent number: 9842689
    Abstract: A method of manufacturing electromagnet coils for use in a magnetic resonance imaging (MRI) system is provided. The method comprises forming a coil representation of a coil surface for the electromagnet coils; setting a plurality of performance metric requirements for a plurality of performance metrics for the electromagnet coils, the plurality of performance metrics including a magnetic field-shape metric and an eddy-field metric; forming a performance functional, based on the coil representation and the plurality of performance metrics, for generating a current density pattern over the coil surface; optimizing the performance functional based on the plurality of performance metric requirements; generating a current density pattern over the coil surface based on the minimized performance functional; and obtaining coil windings from the current density pattern.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: December 12, 2017
    Assignee: SYNAPTIVE MEDICAL (BARBADOS) INC.
    Inventors: Geron André Bindseil, Chad Tyler Harris, William Bradfield Handler, Blaine Alexander Chronik
  • Patent number: 9797967
    Abstract: Gradient coils are operated to acquire magnetic resonance (MR) signals encoding a first MRI image over a first region inside a main magnet of the MRI system in which at least a portion of a subject is placed, the first region being located within a volume of uniform magnetic field with inhomogeneity below a defined threshold. An active coil is energized to shift the volume of uniform magnetic field such that a second region inside the main magnet of the MRI system is located within the shifted volume of uniform magnetic field, at least a portion of the second region being located outside of the volume of uniform magnetic field before the volume of uniform magnetic field has been shifted. The gradient coil is operated to acquire MR signals encoding a second MRI image over the second region.
    Type: Grant
    Filed: July 15, 2015
    Date of Patent: October 24, 2017
    Assignee: Synaptive Medical (Barbados) Inc.
    Inventors: Geron André Bindseil, Chad Tyler Harris
  • Patent number: 9797968
    Abstract: A method of data acquisition at a magnetic resonance imaging (MRI) system is provided. The system receives at least a portion of raw data for an image, and detects anomalies in the portion of raw data received. When anomalies are detected, the system can correct those anomalies dynamically, without waiting for a new scan to be ordered. The system can attempt to scan the offending portion of the raw data, either upon detection of the anomaly or at some point during the scan. The system can also correct anomalies using digital correction methods based on expected values. The anomalies can be detected based on variations from thresholds, masks and expected values all of which can be obtained using one of the ongoing scan, previously performed scans and apriori information relating to the type of scan being performed.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: October 24, 2017
    Assignee: SYNAPTIVE MEDICAL (BARBADOS) INC.
    Inventors: Cameron Anthony Piron, Alexander Gyles Panther, Chad Tyler Harris, Stephen B. E. McFadyen
  • Publication number: 20170293005
    Abstract: A delta-relaxation magnetic resonance imaging (DREMR) system is provided. The system includes a main field magnet and field shifting coils. A main magnetic field with a strength B0 can be generated using the main filed magnet and the strength B0 of the main magnetic field can be varied through the use of the field-shifting coils. The DREMR system can be used to perform signal acquisition based on a pulse sequence for acquiring at least one of T2*-weighted signals imaging; MR spectroscopy signals; saturation imaging signals and MR signals for fingerprinting. The MR signal acquisition can be augmented by varying the strength B0 of the main magnetic field for at least a portion of the pulse sequence used to acquire the MR signal.
    Type: Application
    Filed: February 23, 2015
    Publication date: October 12, 2017
    Inventors: Alexander Gyles PANTHER, Cameron Anthony PIRON, Jeff Alan STAINSBY, Chad Tyler HARRIS
  • Publication number: 20170261571
    Abstract: A method of data acquisition at a magnetic resonance imaging (MRI) system is provided. The system receives at least a portion of raw data for an image, and detects anomalies in the portion of raw data received. When anomalies are detected, the system can correct those anomalies dynamically, without waiting for a new scan to be ordered. The system can attempt to scan the offending portion of the raw data, either upon detection of the anomaly or at some point during the scan. The system can also correct anomalies using digital correction methods based on expected values. The anomalies can be detected based on variations from thresholds, masks and expected values all of which can be obtained using one of the ongoing scan, previously performed scans and apriori information relating to the type of scan being performed.
    Type: Application
    Filed: May 24, 2017
    Publication date: September 14, 2017
    Inventors: Cameron Anthony PIRON, Alex PANTHER, Vincent LUCIANI, Chad Tyler HARRIS
  • Publication number: 20170219669
    Abstract: Gradient coils are operated to acquire magnetic resonance (MR) signals encoding a first MRI image over a first region inside a main magnet of the MRI system in which at least a portion of a subject is placed, the first region being located within a volume of uniform magnetic field with inhomogeneity below a defined threshold. An active coil is energized to shift the volume of uniform magnetic field such that a second region inside the main magnet of the MRI system is located within the shifted volume of uniform magnetic field, at least a portion of the second region being located outside of the volume of uniform magnetic field before the volume of uniform magnetic field has been shifted. The gradient coil is operated to acquire MR signals encoding a second MRI image over the second region.
    Type: Application
    Filed: July 15, 2015
    Publication date: August 3, 2017
    Inventors: Geron André Bindseil, Chad Tyler Harris
  • Publication number: 20170192076
    Abstract: Disclosed herein are cerebrospinal diffusion phantoms which include a housing having a shape and size configured for insertion into a magnetic resonance coil in one or more preselected poses. A scaffold support structure is mounted on an interior of said housing and a plurality of elongated diffusion mimicking members supported on the support array. The elongated diffusion mimicking members are affixed to the scaffold support structure such that elongated diffusion mimicking members extend in directions needed to substantially emulate a 3 dimensional arrangement of cerebrospinal diffusion fiber tracts in a living organism; as well as modules for elimination of resolution based-bias, angular accuracy evaluation, diffusion rate calibration, and quality assurance image referencing. Each elongated diffusion mimicking member includes an aqueous component which can undergo diffusion along the elongated diffusion mimicking member.
    Type: Application
    Filed: September 4, 2015
    Publication date: July 6, 2017
    Inventors: Fergal KERINS, Timotheus Anton GMEINER, Jeff Alan STAINSBY, Chad Tyler HARRIS, Sheryl Rae THINGVOLD, Gregory Allan WHITTON
  • Patent number: 9696392
    Abstract: A method of data acquisition at a magnetic resonance imaging (MRI) system is provided. The system receives at least a portion of raw data for an image, and detects anomalies in the portion of raw data received. When anomalies are detected, the system can correct those anomalies dynamically, without waiting for a new scan to be ordered. The system can attempt to scan the offending portion of the raw data, either upon detection of the anomaly or at some point during the scan. The system can also correct anomalies using digital correction methods based on expected values. The anomalies can be detected based on variations from thresholds, masks and expected values all of which can be obtained using one of the ongoing scan, previously performed scans and apriori information relating to the type of scan being performed.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: July 4, 2017
    Assignee: SYNAPTIVE MEDICAL (BARBADOS) INC.
    Inventors: Cameron Anthony Piron, Alexander Gyles Panther, Vincent Luciani, Chad Tyler Harris
  • Publication number: 20170160359
    Abstract: A method of data acquisition at a magnetic resonance imaging (MRI) system is provided. The system receives at least a portion of raw data for an image, and detects anomalies in the portion of raw data received. When anomalies are detected, the system can correct those anomalies dynamically, without waiting for a new scan to be ordered. The system can attempt to scan the offending portion of the raw data, either upon detection of the anomaly or at some point during the scan. The system can also correct anomalies using digital correction methods based on expected values. The anomalies can be detected based on variations from thresholds, masks and expected values all of which can be obtained using one of the ongoing scan, previously performed scans and apriori information relating to the type of scan being performed.
    Type: Application
    Filed: September 15, 2014
    Publication date: June 8, 2017
    Inventors: Cameron Anthony PIRON, Alexander Gyles PANTHER, Chad Tyler HARRIS, Stephen B.E. MCFADYEN
  • Publication number: 20170067979
    Abstract: A method of correcting warping of an acquired image in an MRI system, caused by non-linearities in gradient field profiles of gradient coils is set forth, comprising a) constructing a computer model representing conducting pathways for each gradient coil in said MRI system; b) calculating a predicted magnetic field at each point in space for each said gradient coil in said model; c) measuring actual magnetic field at each point in space for each said gradient coil in said MRI system; d) verifying accuracy of said model by comparing said predicted magnetic field to said actual magnetic field at each said point in space and in the event said model is not accurate then repeating a)-d), and in the event said model is accurate then; constructing a distortion map for mapping coordinates in real space to coordinates in warped space of said acquired image based on deviations of said predicted magnetic field from linearity; and unwarping said warping of the acquired image using said distortion map.
    Type: Application
    Filed: November 17, 2016
    Publication date: March 9, 2017
    Inventors: Alexander Gyles Panther, Chad Tyler Harris, Philip J. Beatty
  • Publication number: 20170067975
    Abstract: A method of configuring a conducting grid of elements interconnected at intersecting nodes by switches is described.
    Type: Application
    Filed: November 15, 2016
    Publication date: March 9, 2017
    Inventors: Chad Tyler Harris, Alexander Gyles Panther, Stephen B.E. McFadyen
  • Patent number: 9529068
    Abstract: A method of correcting warping of an acquired image in an MRI system, caused by non-linearities in gradient field profiles of gradient coils is set forth, comprising a) constructing a computer model representing conducting pathways for each gradient coil in said MRI system; b) calculating a predicted magnetic field at each point in space for each said gradient coil in said model; c) measuring actual magnetic field at each point in space for each said gradient coil in said MRI system; d) verifying accuracy of said model by comparing said predicted magnetic field to said actual magnetic field at each said point in space and in the event said model is not accurate then repeating a)-d), and in the event said model is accurate then; constructing a distortion map for mapping coordinates in real space to coordinates in warped space of said acquired image based on deviations of said predicted magnetic field from linearity; and unwarping said warping of the acquired image using said distortion map.
    Type: Grant
    Filed: April 27, 2015
    Date of Patent: December 27, 2016
    Assignee: SYNAPTIVE MEDICAL (BARBADOS) INC.
    Inventors: Alexander Gyles Panther, Chad Tyler Harris, Phillip J. Beatty
  • Patent number: 9523751
    Abstract: A method of configuring a conducting grid of elements interconnected at intersecting nodes by switches is described.
    Type: Grant
    Filed: April 27, 2015
    Date of Patent: December 20, 2016
    Assignee: SYNAPTIVE MEDICAL (BARBADOS) INC.
    Inventors: Chad Tyler Harris, Alexander Gyles Panther, Stephen B. E. McFadyen
  • Publication number: 20160313426
    Abstract: A method of configuring a conducting grid of elements interconnected at intersecting nodes by switches is described.
    Type: Application
    Filed: April 27, 2015
    Publication date: October 27, 2016
    Inventors: Chad Tyler HARRIS, Alexander Gyles PANTHER, Stephen B.E. MCFADYEN