Patents by Inventor Chadwick Lawrence Canedy
Chadwick Lawrence Canedy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20210396664Abstract: Building blocks are provided for on-chip chemical sensors and other highly-compact photonic integrated circuits combining interband or quantum cascade lasers and detectors with passive waveguides and other components integrated on a III-V or silicon. A MWIR or LWIR laser source is evanescently coupled into a passive extended or resonant-cavity waveguide that provides evanescent coupling to a sample gas (or liquid) for spectroscopic chemical sensing. In the case of an ICL, the uppermost layer of this passive waveguide has a relatively high index of refraction that enables it to form the core of the waveguide, while the ambient air, consisting of the sample gas, functions as the top cladding layer. A fraction of the propagating light beam is absorbed by the sample gas if it contains a chemical species having a fingerprint absorption feature within the spectral linewidth of the laser emission.Type: ApplicationFiled: August 20, 2021Publication date: December 23, 2021Applicant: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, R. Joseph Weiblen, Mijin Kim
-
Publication number: 20210389242Abstract: Building blocks are provided for on-chip chemical sensors and other highly-compact photonic integrated circuits combining interband or quantum cascade lasers and detectors with passive waveguides and other components integrated on a III-V or silicon. A MWIR or LWIR laser source is evanescently coupled into a passive extended or resonant-cavity waveguide that provides evanescent coupling to a sample gas (or liquid) for spectroscopic chemical sensing. In the case of an ICL, the uppermost layer of this passive waveguide has a relatively high index of refraction that enables it to form the core of the waveguide, while the ambient air, consisting of the sample gas, functions as the top cladding layer. A fraction of the propagating light beam is absorbed by the sample gas if it contains a chemical species having a fingerprint absorption feature within the spectral linewidth of the laser emission.Type: ApplicationFiled: August 20, 2021Publication date: December 16, 2021Applicant: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, R. Joseph Weiblen, Mijin Kim
-
Publication number: 20210389241Abstract: Building blocks are provided for on-chip chemical sensors and other highly-compact photonic integrated circuits combining interband or quantum cascade lasers and detectors with passive waveguides and other components integrated on a III-V or silicon. A MWIR or LWIR laser source is evanescently coupled into a passive extended or resonant-cavity waveguide that provides evanescent coupling to a sample gas (or liquid) for spectroscopic chemical sensing. In the case of an ICL, the uppermost layer of this passive waveguide has a relatively high index of refraction that enables it to form the core of the waveguide, while the ambient air, consisting of the sample gas, functions as the top cladding layer. A fraction of the propagating light beam is absorbed by the sample gas if it contains a chemical species having a fingerprint absorption feature within the spectral linewidth of the laser emission.Type: ApplicationFiled: August 20, 2021Publication date: December 16, 2021Applicant: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, R. Joseph Weiblen, Mijin Kim
-
Patent number: 11125689Abstract: Building blocks are provided for on-chip chemical sensors and other highly-compact photonic integrated circuits combining interband or quantum cascade lasers and detectors with passive waveguides and other components integrated on a III-V or silicon. A MWIR or LWIR laser source is evanescently coupled into a passive extended or resonant-cavity waveguide that provides evanescent coupling to a sample gas (or liquid) for spectroscopic chemical sensing. In the case of an ICL, the uppermost layer of this passive waveguide has a relatively high index of refraction that enables it to form the core of the waveguide, while the ambient air, consisting of the sample gas, functions as the top cladding layer. A fraction of the propagating light beam is absorbed by the sample gas if it contains a chemical species having a fingerprint absorption feature within the spectral linewidth of the laser emission.Type: GrantFiled: July 12, 2019Date of Patent: September 21, 2021Assignee: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, R. Joseph Weiblen, Mijin Kim
-
Patent number: 10559704Abstract: Resonant-cavity infrared photodetector (RCID) devices that include a thin absorber layer contained entirely within the resonant cavity. In some embodiments, the absorber is a single type-II InAs—GaSb interface situated between an AlSb/InAs superlattice n-type region and a p-type AlSb/GaSb region. In other embodiments, the absorber region comprises quantum wells formed on an upper surface of the n-type region. In other embodiments, the absorber region comprises a “W”-structured quantum well situated between two barrier layers, the “W”-structured quantum well comprising a hole quantum well sandwiched between two electron quantum wells. In other embodiments, the RCID includes a thin absorber region and an nBn or pBp active core within a resonant cavity. In some embodiments, the RCID is configured to absorb incident light propagating in the direction of the epitaxial growth of the RCID structure, while in other embodiments, it absorbs light propagating in the epitaxial plane of the structure.Type: GrantFiled: October 23, 2018Date of Patent: February 11, 2020Assignee: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, Mijin Kim
-
Publication number: 20200018701Abstract: Building blocks are provided for on-chip chemical sensors and other highly-compact photonic integrated circuits combining interband or quantum cascade lasers and detectors with passive waveguides and other components integrated on a III-V or silicon. A MWIR or LWIR laser source is evanescently coupled into a passive extended or resonant-cavity waveguide that provides evanescent coupling to a sample gas (or liquid) for spectroscopic chemical sensing. In the case of an ICL, the uppermost layer of this passive waveguide has a relatively high index of refraction that enables it to form the core of the waveguide, while the ambient air, consisting of the sample gas, functions as the top cladding layer. A fraction of the propagating light beam is absorbed by the sample gas if it contains a chemical species having a fingerprint absorption feature within the spectral linewidth of the laser emission.Type: ApplicationFiled: July 12, 2019Publication date: January 16, 2020Applicant: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, R. Joseph Weiblen, Mijin Kim
-
Patent number: 10461202Abstract: Resonant-cavity infrared photodetector (RCID) devices that include a thin absorber layer contained entirely within the resonant cavity. In some embodiments, the absorber is a single type-II InAs—GaSb interface situated between an AlSb/InAs superlattice n-type region and a p-type AlSb/GaSb region. In other embodiments, the absorber region comprises quantum wells formed on an upper surface of the n-type region. In other embodiments, the absorber region comprises a “W”-structured quantum well situated between two barrier layers, the “W”-structured quantum well comprising a hole quantum well sandwiched between two electron quantum wells. In other embodiments, the RCID includes a thin absorber region and an nBn or pBp active core within a resonant cavity. In some embodiments, the RCID is configured to absorb incident light propagating in the direction of the epitaxial growth of the RCID structure, while in other embodiments, it absorbs light propagating in the epitaxial plane of the structure.Type: GrantFiled: April 9, 2019Date of Patent: October 29, 2019Assignee: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, Mijin Kim
-
Patent number: 10453977Abstract: Resonant-cavity infrared photodetector (RCID) devices that include a thin absorber layer contained entirely within the resonant cavity. In some embodiments, the absorber is a single type-II InAs—GaSb interface situated between an AlSb/InAs superlattice n-type region and a p-type AlSb/GaSb region. In other embodiments, the absorber region comprises quantum wells formed on an upper surface of the n-type region. In other embodiments, the absorber region comprises a “W”-structured quantum well situated between two barrier layers, the “W”-structured quantum well comprising a hole quantum well sandwiched between two electron quantum wells. In other embodiments, the RCID includes a thin absorber region and an nBn or pBp active core within a resonant cavity. In some embodiments, the RCID is configured to absorb incident light propagating in the direction of the epitaxial growth of the RCID structure, while in other embodiments, it absorbs light propagating in the epitaxial plane of the structure.Type: GrantFiled: April 9, 2019Date of Patent: October 22, 2019Assignee: The Governement of the United States of America, as represented by the Secretary of the NavyInventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, Mijin Kim
-
Patent number: 10446701Abstract: Resonant-cavity infrared photodetector (RCID) devices that include a thin absorber layer contained entirely within the resonant cavity. In some embodiments, the absorber is a single type-II InAs—GaSb interface situated between an AlSb/InAs superlattice n-type region and a p-type AlSb/GaSb region. In other embodiments, the absorber region comprises quantum wells formed on an upper surface of the n-type region. In other embodiments, the absorber region comprises a “W”-structured quantum well situated between two barrier layers, the “W”-structured quantum well comprising a hole quantum well sandwiched between two electron quantum wells. In other embodiments, the RCID includes a thin absorber region and an nBn or pBp active core within a resonant cavity. In some embodiments, the RCID is configured to absorb incident light propagating in the direction of the epitaxial growth of the RCID structure, while in other embodiments, it absorbs light propagating in the epitaxial plane of the structure.Type: GrantFiled: April 9, 2019Date of Patent: October 15, 2019Assignee: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, Mijin Kim
-
Publication number: 20190237596Abstract: Resonant-cavity infrared photodetector (RCID) devices that include a thin absorber layer contained entirely within the resonant cavity. In some embodiments, the absorber is a single type-II InAs—GaSb interface situated between an AlSb/InAs superlattice n-type region and a p-type AlSb/GaSb region. In other embodiments, the absorber region comprises quantum wells formed on an upper surface of the n-type region. In other embodiments, the absorber region comprises a “W”-structured quantum well situated between two barrier layers, the “W”-structured quantum well comprising a hole quantum well sandwiched between two electron quantum wells. In other embodiments, the RCID includes a thin absorber region and an nBn or pBp active core within a resonant cavity. In some embodiments, the RCID is configured to absorb incident light propagating in the direction of the epitaxial growth of the RCID structure, while in other embodiments, it absorbs light propagating in the epitaxial plane of the structure.Type: ApplicationFiled: April 9, 2019Publication date: August 1, 2019Applicant: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, Mijin Kim
-
Publication number: 20190237594Abstract: Resonant-cavity infrared photodetector (RCID) devices that include a thin absorber layer contained entirely within the resonant cavity. In some embodiments, the absorber is a single type-II InAs—GaSb interface situated between an AlSb/InAs superlattice n-type region and a p-type AlSb/GaSb region. In other embodiments, the absorber region comprises quantum wells formed on an upper surface of the n-type region. In other embodiments, the absorber region comprises a “W”-structured quantum well situated between two barrier layers, the “W”-structured quantum well comprising a hole quantum well sandwiched between two electron quantum wells. In other embodiments, the RCID includes a thin absorber region and an nBn or pBp active core within a resonant cavity. In some embodiments, the RCID is configured to absorb incident light propagating in the direction of the epitaxial growth of the RCID structure, while in other embodiments, it absorbs light propagating in the epitaxial plane of the structure.Type: ApplicationFiled: April 9, 2019Publication date: August 1, 2019Applicant: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, Mijin Kim
-
Publication number: 20190237595Abstract: Resonant-cavity infrared photodetector (RCID) devices that include a thin absorber layer contained entirely within the resonant cavity. In some embodiments, the absorber is a single type-II InAs—GaSb interface situated between an AlSb/InAs superlattice n-type region and a p-type AlSb/GaSb region. In other embodiments, the absorber region comprises quantum wells formed on an upper surface of the n-type region. In other embodiments, the absorber region comprises a “W”-structured quantum well situated between two barrier layers, the “W”-structured quantum well comprising a hole quantum well sandwiched between two electron quantum wells. In other embodiments, the RCID includes a thin absorber region and an nBn or pBp active core within a resonant cavity. In some embodiments, the RCID is configured to absorb incident light propagating in the direction of the epitaxial growth of the RCID structure, while in other embodiments, it absorbs light propagating in the epitaxial plane of the structure.Type: ApplicationFiled: April 9, 2019Publication date: August 1, 2019Applicant: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, Mijin Kim
-
Patent number: 10333011Abstract: Resonant-cavity infrared photodetector (RCID) devices that include a thin absorber layer contained entirely within the resonant cavity. In some embodiments, the absorber is a single type-II InAs—GaSb interface situated between an AlSb/InAs superlattice n-type region and a p-type AlSb/GaSb region. In other embodiments, the absorber region comprises quantum wells formed on an upper surface of the n-type region. In other embodiments, the absorber region comprises a “W”-structured quantum well situated between two barrier layers, the “W”-structured quantum well comprising a hole quantum well sandwiched between two electron quantum wells. In other embodiments, the RCID includes a thin absorber region and an nBn or pBp active core within a resonant cavity. In some embodiments, the RCID is configured to absorb incident light propagating in the direction of the epitaxial growth of the RCID structure, while in other embodiments, it absorbs light propagating in the epitaxial plane of the structure.Type: GrantFiled: July 10, 2018Date of Patent: June 25, 2019Assignee: The United States of America, as represented by the Secretary of the NavyInventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, Mijin Kim, Eric Stanton
-
Patent number: 10297699Abstract: Resonant-cavity infrared photodetector (RCID) devices that include a thin absorber layer contained entirely within the resonant cavity. In some embodiments, the absorber is a single type-II InAs-GaSb interface situated between an AlSb/InAs superlattice n-type region and a p-type AlSb/GaSb region. In other embodiments, the absorber region comprises quantum wells formed on an upper surface of the n-type region. In other embodiments, the absorber region comprises a “W”-structured quantum well situated between two barrier layers, the “W”-structured quantum well comprising a hole quantum well sandwiched between two electron quantum wells. In other embodiments, the RCID includes a thin absorber region and an nBn or pBp active core within a resonant cavity. In some embodiments, the RCID is configured to absorb incident light propagating in the direction of the epitaxial growth of the RCID structure, while in other embodiments, it absorbs light propagating in the epitaxial plane of the structure.Type: GrantFiled: March 19, 2018Date of Patent: May 21, 2019Assignee: The United States of America, as represented by the Secretary of the NavyInventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, Mijin Kim
-
Publication number: 20190148569Abstract: Resonant-cavity infrared photodetector (RCID) devices that include a thin absorber layer contained entirely within the resonant cavity. In some embodiments, the absorber is a single type-II InAs—GaSb interface situated between an AlSb/InAs superlattice n-type region and a p-type AlSb/GaSb region. In other embodiments, the absorber region comprises quantum wells formed on an upper surface of the n-type region. In other embodiments, the absorber region comprises a “W”-structured quantum well situated between two barrier layers, the “W”-structured quantum well comprising a hole quantum well sandwiched between two electron quantum wells. In other embodiments, the RCID includes a thin absorber region and an nBn or pBp active core within a resonant cavity. In some embodiments, the RCID is configured to absorb incident light propagating in the direction of the epitaxial growth of the RCID structure, while in other embodiments, it absorbs light propagating in the epitaxial plane of the structure.Type: ApplicationFiled: October 23, 2018Publication date: May 16, 2019Applicant: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, Mijin Kim
-
Publication number: 20180331237Abstract: Resonant-cavity infrared photodetector (RCID) devices that include a thin absorber layer contained entirely within the resonant cavity. In some embodiments, the absorber is a single type-II InAs—GaSb interface situated between an AlSb/InAs superlattice n-type region and a p-type AlSb/GaSb region. In other embodiments, the absorber region comprises quantum wells formed on an upper surface of the n-type region. In other embodiments, the absorber region comprises a “W”-structured quantum well situated between two barrier layers, the “W”-structured quantum well comprising a hole quantum well sandwiched between two electron quantum wells. In other embodiments, the RCID includes a thin absorber region and an nBn or pBp active core within a resonant cavity. In some embodiments, the RCID is configured to absorb incident light propagating in the direction of the epitaxial growth of the RCID structure, while in other embodiments, it absorbs light propagating in the epitaxial plane of the structure.Type: ApplicationFiled: July 10, 2018Publication date: November 15, 2018Applicant: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, Mijin Kim, Eric Stanton
-
Patent number: 10062794Abstract: Resonant-cavity infrared photodetector (RCID) devices that include a thin absorber layer contained entirely within the resonant cavity. In some embodiments, the absorber region is a single type-II InAs—GaSb interface situated between an n-type region comprising an AlSb/InAs n-type superlattice and a p-type AlSb/GaSb region. In other embodiments, the absorber region comprises one or more quantum wells formed on an upper surface of the n-type region. In other embodiments, the absorber region comprises a “W”-structured quantum well situated between two barrier layers, the “W”-structured quantum well comprising a hole quantum well sandwiched between two electron quantum wells. In other embodiments, an RCID in accordance with the present invention includes a thin absorber region and an nBn or pBp active core within a resonant cavity.Type: GrantFiled: May 26, 2017Date of Patent: August 28, 2018Assignee: The United States of America, as represented by the Secretary of the NavyInventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, Mijin Kim
-
Publication number: 20180212080Abstract: Resonant-cavity infrared photodetector (RCID) devices that include a thin absorber layer contained entirely within the resonant cavity. In some embodiments, the absorber is a single type-II InAs-GaSb interface situated between an AlSb/InAs superlattice n-type region and a p-type AlSb/GaSb region. In other embodiments, the absorber region comprises quantum wells formed on an upper surface of the n-type region. In other embodiments, the absorber region comprises a “W”-structured quantum well situated between two barrier layers, the “W”-structured quantum well comprising a hole quantum well sandwiched between two electron quantum wells. In other embodiments, the RCID includes a thin absorber region and an nBn or pBp active core within a resonant cavity. In some embodiments, the RCID is configured to absorb incident light propagating in the direction of the epitaxial growth of the RCID structure, while in other embodiments, it absorbs light propagating in the epitaxial plane of the structure.Type: ApplicationFiled: March 19, 2018Publication date: July 26, 2018Applicant: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, Mijin Kim
-
Patent number: 9960571Abstract: Novel ICL layering designs, ridge waveguide architectures, and processing protocols that will significantly lower the optical losses and improve the power conversion efficiencies of interband cascade lasers designed for both DFB single-mode and high-power applications. The semiconductor top cladding and metal contact layers are eliminated or significantly reduced. By instead using a dielectric or air top clad, or dielectric or air layers to supplement a thin top clad, in conjunction with lateral current injection and weak index-guiding, the present invention will substantially reduce the internal loss of such ICLs, resulting in lower lasing threshold, higher efficiency, and higher maximum power.Type: GrantFiled: June 23, 2017Date of Patent: May 1, 2018Assignee: The United States of America, as represented by the Secretary of the NavyInventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, Mijin Kim
-
Patent number: 9923338Abstract: A DFB laser having a reduced fill factor and reduced loss. A plurality of spaced-apart contact openings are etched into a dielectric layer situated on top of a laser ridge having a DFB grating layer so that electrical contact between the metal top contact layer and the DFB gratings is made only in the etched openings, since all other areas of the top surface of the DFB-grated laser ridge are insulated from the metal contact layer by the dielectric. The size and shape of contact openings and their spacing are configured so that the ratio of the total area of the openings to the total area of the laser ridge provides a fill factor of less than 100%.Type: GrantFiled: June 3, 2016Date of Patent: March 20, 2018Assignee: The United States of America, as represented by the Secretary of the NavyInventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Mijin Kim, Charles D. Merritt