Patents by Inventor Chai-Yuan Sheu

Chai-Yuan Sheu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7632694
    Abstract: A manufacturing method for a TFT electrode which is implemented to prevent metal ion diffusion to an adjacent insulating layer during fabrication. The method includes, in the order recited, providing a substrate; forming a first metal layer on the substrate which is comprised of one of a single metal layer structure or a multiple metal layer structure; performing a photolithography and etching process on the first metal layer to form a gate electrode of the TFT electrode; forming a transparent conducting electrode on the first metal layer to cover at least the gate electrode and prevent metal ion diffusion during fabrication, the transparent conducting electrode being comprised of one of indium tin oxide, indium zinc oxide, ZnO or an organic material; and forming a pixel electrode which functions as a barrier to prevent metal ion diffusion during fabrication by performing a photolithography and etching process on the transparent conducting electrode.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: December 15, 2009
    Assignees: Taiwan TFT LCD Association, Chunghwa Picture Tubes, Ltd., AU Optronics Corp., Quanta Display Inc., Hannstar Display Corp., Chi Mei Optoelectronics Corp., Industrial Technology Research Institute, Toppoly Optoelectronics Corp.
    Inventors: Cheng-Chung Chen, Yu-Chang Sun, Yi-Hsun Huang, Chien-Wei Wu, Shuo-Wei Liang, Chia-Hsiang Chen, Chi-Shen Lee, Chai-Yuan Sheu, Yu-Chi Lee, Te-Ming Chu, Cheng-Hsing Chen
  • Publication number: 20060202203
    Abstract: The invention provides a TFT electrode structure and its manufacturing method that can prevent metal diffusion occurring in the fabrication of a TFT, and thereby reduce the risk of contamination of the chemical vapor deposition process due to metallic ion diffusion. The transparent pixel electrode is formed after the gate electrode metal so that the pixel transparent electrode can be used as a barrier layer to prevent metal diffusion under high temperature from the gate electrode metal to adjacent insulating layers or the active layer. Further, the method used to form the transparent pixel electrode is a low-temperature physical vapor deposition process, which affected less by the processing environment, and the transparent pixel electrode is a conductive layer that is not affected by metal diffusion.
    Type: Application
    Filed: March 15, 2006
    Publication date: September 14, 2006
    Inventors: Cheng-Chung Chen, Yu-Chang Sun, Yi-Hsun Huang, Chien-Wei Wu, Shuo-Wei Liang, Chia-Hsiang Chen, Chi-Shen Lee, Chai-Yuan Sheu, Yu-Chi Lee, Te-Ming Chu, Cheng-Hsing Chen
  • Patent number: 7060541
    Abstract: A method of fabricating a thin film transistor (TFT) array involves ion replacement by oxidation-reduction processes for implementing the metal wiring layout of TFT-LCDs. This can overcome metal etching difficulties and achieve automatic alignment. The method of the invention replaces traditional lithographic etching techniciues.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: June 13, 2006
    Assignee: Industrial Technology Research Institute
    Inventors: Chi-Shen Lee, Cheng-Chung Chen, Chi-Lin Chen, Chai-Yuan Sheu
  • Patent number: 7045817
    Abstract: The invention provides a TFT electrode structure and its manufacturing method that can prevent metal diffusion occurring in the fabrication of a TFT, and thereby reduce the risk of contamination of the chemical vapor deposition process due to metallic ion diffusion. The transparent pixel electrode is formed after the gate electrode metal so that the pixel transparent electrode can be used as a barrier layer to prevent metal diffusion under high temperature from the gate electrode metal to adjacent insulating layers or the active layer. Further, the method used to form the transparent pixel electrode is a low-temperature physical vapor deposition process, which affected less by the processing environment, and the transparent pixel electrode is a conductive layer that is not affected by metal diffusion.
    Type: Grant
    Filed: October 15, 2004
    Date of Patent: May 16, 2006
    Assignees: Taiwan TFT LCD Association, Chunghwa Picture Tubes, Ltd., Au Optronics Corp, Quanta Display Inc., Hannstar Display Corp, Chi Mei Optoelectronics Corp., Industrial Technology Research Institute, Toppoly Optoelectronics Corp.
    Inventors: Cheng-Chung Chen, Yu-Chang Sun, Yi-Hsun Huang, Chien-Wei Wu, Shuo-Wei Liang, Chia-Hsiang Chen, Chi-Shen Lee, Chai-Yuan Sheu, Yu-Chi Lee, Te-Ming Chu, Cheng-Hsing Chen
  • Patent number: 7045441
    Abstract: A method for forming a, single-crystal silicon layer on a transparent substrate. A transparent substrate having an amorphous silicon layer formed thereon and a silicon wafer having a hydrogen ion layer formed therein are provided. The silicon wafer is then reversed and laminated onto the amorphous silicon layer so that a layer of single-crystal silicon is between the hydrogen ion layer and the amorphous silicon layer. The laminated silicon wafer and the amorphous silicon layer are then subjected to laser or infrared light to cause chemical bonding of the single crystal silicon layer and the amorphous silicon layer and inducing a hydro-cracking reaction thereby separating the silicon wafer is and the transparent substrate at the hydrogen ion layer, and leaving the single-crystal silicon layer on the transparent substrate.
    Type: Grant
    Filed: July 28, 2003
    Date of Patent: May 16, 2006
    Assignee: Industrial Technology Research Institute
    Inventors: Chich Shang Chang, Chi-Shen Lee, Shun-Fa Huang, Jung Fang Chang, Wen-Chih Hu, Liang-Tang Wang, Chai-Yuan Sheu
  • Publication number: 20050274947
    Abstract: The invention provides a TFT electrode structure and its manufacturing method that can prevent metal diffusion occurring in the fabrication of a TFT, and thereby reduce the risk of contamination of the chemical vapor deposition process due to metallic ion diffusion. The transparent pixel electrode is formed after the gate electrode metal so that the pixel transparent electrode can be used as a barrier layer to prevent metal diffusion under high temperature from the gate electrode metal to adjacent insulating layers or the active layer. Further, the method used to form the transparent pixel electrode is a low-temperature physical vapor deposition process, which affected less by the processing environment, and the transparent pixel electrode is a conductive layer that is not affected by metal diffusion.
    Type: Application
    Filed: October 15, 2004
    Publication date: December 15, 2005
    Inventors: Cheng-Chung Chen, Yu-Chang Sun, Yi-Hsun Huang, Chien-Wei Wu, Shuo-Wei Liang, Chia-Hsiang Chen, Chi-Shen Lee, Chai-Yuan Sheu, Yu-Chi Lee, Te-Ming Chu, Cheng-Hsing Chen
  • Patent number: 6924230
    Abstract: A method for forming a conductive layer is disclosed, which has the following steps. First, a substrate is provided, and then a patterned photoresist layer having an undercut is formed on the substrate. After that, at least one conductive layer is deposited on the substrate. Finally, the patterned photoresist layer is lifted off; wherein the shape of the conductive layer remaining on the substrate is complementary to that of the patterned photoresist layer.
    Type: Grant
    Filed: September 3, 2003
    Date of Patent: August 2, 2005
    Assignee: Industrial Technology Research Institute
    Inventors: Yu-Chang Sun, Ching-Hsuan Tang, Chi-Shen Lee, Chai-Yuan Sheu
  • Patent number: 6924503
    Abstract: An organic integrated device for thin film transistor and light emitting diode. The organic integrated device of the present invention includes a top-gate organic thin film transistor (top-gate OTFT) and an organic light emitting diode (OLED), both formed on the same substrate. In the organic integrated device, some layers can be commonly used by both OTFT and OLED, and some layers can be made of the same material and formed in the same course, which simplifies the entire process.
    Type: Grant
    Filed: January 13, 2003
    Date of Patent: August 2, 2005
    Assignee: Industrial Technology Research Institute
    Inventors: Horng-Long Cheng, Yu-Wu Wang, Ching-Hsun Chao, Cheng-Chung Lee, Chai-Yuan Sheu
  • Publication number: 20050059190
    Abstract: A method of fabricating thin film transistor TFT array discloses ions of desired-plated metal and the graphs of the desired-plated area are made by oxidation-reduction materials processes ion replacement for implementing the metal wiring layout of the TFT-LCDs. This, therefore, can overcome the problem of uneasy metal etching thereto achieves the purpose of an automatic alignment. The method uses the ability of the oxidation-reduction reaction to implement the replacement for alternating the lithography etching process in the metal wiring layout as presented in the traditional technique.
    Type: Application
    Filed: September 30, 2003
    Publication date: March 17, 2005
    Applicant: Industrial Technology Research Institute
    Inventors: Chi-Shen Lee, Cheng-Chung Chen, Chi-Lin Chen, Chai-Yuan Sheu
  • Publication number: 20040253815
    Abstract: A method for forming a conductive layer is disclosed, which has the following steps. First, a substrate is provided, and then a patterned photoresist layer having an undercut is formed on the substrate. After that, at least one conductive layer is deposited on the substrate. Finally, the patterned photoresist layer is lifted off; wherein the shape of the conductive layer remaining on the substrate is complementary to that of the patterned photoresist layer.
    Type: Application
    Filed: September 3, 2003
    Publication date: December 16, 2004
    Applicant: Industrial Technology Research Institute
    Inventors: Yu-Chang Sun, Ching-Hsuan Tang, Chi-Shen Lee, Chai-Yuan Sheu
  • Publication number: 20040180518
    Abstract: A method for forming a, single-crystal silicon layer on a transparent substrate. A transparent substrate having an amorphous silicon layer formed thereon and a silicon wafer having a hydrogen ion layer formed therein are provided. The silicon wafer is then reversed and laminated onto the amorphous silicon layer so that a layer of single-crystal silicon is between the hydrogen ion layer and the amorphous silicon layer. The laminated silicon wafer and the amorphous silicon layer are then subjected to laser or infrared light to cause chemical bonding of the single crystal silicon layer and the amorphous silicon layer and inducing a hydro-cracking reaction thereby separating the silicon wafer is and the transparent substrate at the hydrogen ion layer, and leaving the single-crystal silicon layer on the transparent substrate.
    Type: Application
    Filed: July 28, 2003
    Publication date: September 16, 2004
    Applicant: Industrial Technology Research Institute
    Inventors: Chich Shang Chang, Chi-Shen Lee, Shun-Fa Huang, Jung Fang Chang, Wen-Chih Hu, Liang-Tang Wang, Chai-Yuan Sheu
  • Publication number: 20040178173
    Abstract: A method for laminating a material layer onto a transparent substrate. The method includes the steps of: providing a transparent substrate having an amorphous silicon layer formed thereon; forming an infrared absorbent metal layer on the material layer; inverting the material layer to laminate the metal layer onto the amorphous silicon layer; and exposing the metal layer and the amorphous silicon layer to infrared light to cause a metal silicide producing reaction and thus laminate the material layer and the transparent substrate.
    Type: Application
    Filed: June 10, 2003
    Publication date: September 16, 2004
    Applicant: Industrial Technology Research Institute
    Inventors: Chich Shang Chang, Chi-Shen Lee, Shun-Fa Huang, Jung Fang Chang, Wen-Chih Hu, Liang-Tang Wang, Chai-Yuan Sheu
  • Patent number: 6737303
    Abstract: A process for forming an organic semiconducting layer having molecular alignment. First, a photoalignment organic layer is formed on a substrate or A dielectric layer. Next, the photoalignment organic layer is irradiated by polarized light through a mask, such that the photoalignment organic layer becomes an orientation layer having molecular alignment. Finally, an organic semiconducting layer is formed on the orientation layer, such that the organic semiconducting layer aligns according to the alignment of the orientation layer to exhibit molecular alignment. The present invention can form an organic semiconducting layer with different molecular alignments in different regions over the same substrate by means of polarized light exposure through a mask.
    Type: Grant
    Filed: November 22, 2002
    Date of Patent: May 18, 2004
    Assignee: Industrial Technology Research Institute
    Inventors: Horng-Long Cheng, Wei-Yang Chou, Chai-Yuan Sheu, Yu-Wu Wang, Jia-Chong Ho, Chi-Chang Liao
  • Publication number: 20040043531
    Abstract: A process for forming an organic semiconducting layer having molecular alignment. First, a photoalignment organic layer is formed on a substrate or a dielectric layer. Next, the photoalignment organic layer is irradiated by polarized light through a mask, such that the photoalignment organic layer becomes an orientation layer having molecular alignment. Finally, an organic semiconducting layer is formed on the orientation layer, such that the organic semiconducting layer aligns according to the alignment of the orientation layer to exhibit molecular alignment. The present invention can form an organic semiconducting layer with different molecular alignments in different regions over the same substrate by means of polarized light exposure through a mask.
    Type: Application
    Filed: November 22, 2002
    Publication date: March 4, 2004
    Inventors: Horng-Long Cheng, Wei-Yang Chou, Chai-Yuan Sheu, Yu-Wu Wang, Jia-Chong Ho, Chi-Chang Liao
  • Publication number: 20040041146
    Abstract: An organic integrated device for thin film transistor and light emitting diode. The organic integrated device of the present invention includes a top-gate organic thin film transistor (top-gate OTFT) and an organic light emitting diode (OLED), both formed on the same substrate. In the organic integrated device, some layers can be commonly used by both OTFT and OLED, and some layers can be made of the same material and formed in the same course, which simplifies the entire process.
    Type: Application
    Filed: January 13, 2003
    Publication date: March 4, 2004
    Inventors: Horng-Long Cheng, Yu-Wu Wang, Ching-Hsun Chao, Cheng-Chung Lee, Chai-Yuan Sheu
  • Patent number: 6522066
    Abstract: A pixel structure of a full-color organic light-emitting diode (OLED) display device comprises a black matrix, a color changing medium, two thin film transistors, a storage capacitor, and an OLED device arranged on a substrate. The pixel structure of the display device uses blue organic light-emitting diodes or polymer light-emitting diodes as electroluminescent media. The low-temperature poly Si (LTPS) thin film transistors provide a current to the OLED device and serve as an active driving device. The color changing medium changes blue light into red or green light to form full-color OLED. The processing steps include the black matrix process, the island process, the gate process, the interlayer process, the color changing medium process, and the OLED deposition process. Because a color changing medium is integrated on the LTPS thin film transistors, this invention can make display devices of high resolution, high luminous efficiency and wide viewing angle.
    Type: Grant
    Filed: March 8, 2001
    Date of Patent: February 18, 2003
    Assignee: Industrial Technology Research Institute
    Inventors: Chai-Yuan Sheu, Wen-Chun Wang, Yung-Hui Yeh
  • Patent number: 6515428
    Abstract: A pixel structure of an active matrix full-color OLED display device and its manufacturing method are provided. The pixel structure of the display device comprises two thin film transistors, a storage capacitor, a color filter, and an OLED device structure constructed on a top surface of a substrate, a black matrix region outside the color filter region and under the thin film transistors. In this pixel, structure of the OLED display device, the OLED device structure and the color filter are integrated in a thin-film-transistor array. This simplifies the process, reduces the leakage of light and increases the contrast of the display device. A white OEL device is used to emit light. A light then passes a color filter to get red, green or blue color of light. Therefore, a full-color OLED is formed. A poly-silicon thin film transistor is used to provide current to the OLED device structure and served as an active drive device.
    Type: Grant
    Filed: November 24, 2000
    Date of Patent: February 4, 2003
    Assignee: Industrial Technology Research Institute
    Inventors: Yung-Hui Yeh, Wen-Chun Wang, Chai-Yuan Sheu
  • Publication number: 20020125820
    Abstract: A pixel structure of a full-color organic light-emitting diode (OLED) display device comprises a black matrix, a color changing medium, two thin film transistors, a storage capacitor, and an OLED device arranged on a substrate. The pixel structure of the display device uses blue organic light-emitting diodes or polymer light-emitting diodes as electroluminescent media. The low-temperature poly Si (LTPS) thin film transistors provide a current to the OLED device and serve as an active driving device. The color changing medium changes blue light into red or green light to form full-color OLED. The processing steps include the black matrix process, the island process, the gate process, the interlayer process, the color changing medium process, and the OLED deposition process. Because a color changing medium is integrated on the LTPS thin film transistors, this invention can make display devices of high resolution, high luminous efficiency and wide viewing angle.
    Type: Application
    Filed: March 8, 2001
    Publication date: September 12, 2002
    Inventors: Chai-Yuan Sheu, Wen-Chun Wang, Yung-Hui Yeh