Patents by Inventor Chain-Tsuan Liu

Chain-Tsuan Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220072610
    Abstract: A method and a system for manufacturing a structure includes the steps of: (a) supplying a mixture consisting a plurality of primitive materials at a target spot; (b) melting and solidifying the mixture disposed at the target spot to form a portion of a metallic structure consisting of an alloy of the plurality of the primitive materials; and (c) repeating steps (a) and (b) at a plurality of target spots in a three-dimensional space to produce the metallic structure of the alloy.
    Type: Application
    Filed: September 4, 2020
    Publication date: March 10, 2022
    Inventors: Chain Tsuan Liu, Tianlong Zhang
  • Patent number: 8225675
    Abstract: A test fixture for simultaneously testing two material test samples is provided. The fixture provides substantially equal shear and tensile stresses in each test specimens. By gradually applying a load force to the fixture only one of the two specimens fractures. Upon fracture of the one specimen, the fixture and the load train lose contact and the second specimen is preserved in a state of upset just prior to fracture. Particular advantages of the fixture are (1) to control the tensile to shear load on the specimen for understanding the effect of these stresses on the deformation behavior of advanced materials, (2) to control the location of fracture for accessing localized material properties including the variation of the mechanical properties and residual stresses across the thickness of advanced materials, (3) to yield a fractured specimen for strength measurement and an unfractured specimen for examining the microstructure just prior to fracture.
    Type: Grant
    Filed: September 8, 2009
    Date of Patent: July 24, 2012
    Assignee: UT-Battelle, LLC
    Inventors: Chun-Hway Hsueh, Chain-tsuan Liu, Easo P. George
  • Publication number: 20110056304
    Abstract: A test fixture for simultaneously testing two material test samples is provided. The fixture provides substantially equal shear and tensile stresses in each test specimens. By gradually applying a load force to the fixture only one of the two specimens fractures. Upon fracture of the one specimen, the fixture and the load train lose contact and the second specimen is preserved in a state of upset just prior to fracture. Particular advantages of the fixture are (1) to control the tensile to shear load on the specimen for understanding the effect of these stresses on the deformation behavior of advanced materials, (2) to control the location of fracture for accessing localized material properties including the variation of the mechanical properties and residual stresses across the thickness of advanced materials, (3) to yield a fractured specimen for strength measurement and an unfractured specimen for examining the microstructure just prior to fracture.
    Type: Application
    Filed: September 8, 2009
    Publication date: March 10, 2011
    Inventors: Chun-hway Hsueh, Chain-tsuan Liu, Easo P. George
  • Patent number: 7754144
    Abstract: An austenitic stainless steel HTUPS alloy includes, in weight percent: 15 to 30 Ni; 10 to 15 Cr; 2 to 5 Al; 0.6 to 5 total of at least one of Nb and Ta; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1 W; up to 0.5 Cu; up to 4 Mn; up to 1 Si; 0.05 to 0.15 C; up to 0.15 B; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni wherein said alloy forms an external continuous scale comprising alumina, nanometer scale sized particles distributed throughout the microstructure, said particles comprising at least one composition selected from the group consisting of NbC and TaC, and a stable essentially single phase fcc austenitic matrix microstructure, said austenitic matrix being essentially delta-ferrite-free and essentially BCC-phase-free.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: July 13, 2010
    Assignees: UT-Battelle, LLC, University of Tennessee Research Foundation
    Inventors: Michael P Brady, Michael L Santella, Yukinori Yamamoto, Chain-tsuan Liu
  • Patent number: 7754305
    Abstract: An austenitic stainless steel alloy includes, in weight percent: >4 to 15 Mn; 8 to 15 Ni; 14 to 16 Cr; 2.4 to 3 Al; 0.4 to 1 total of at least one of Nb and Ta; 0.05 to 0.2 C; 0.01 to 0.02 B; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1W; up to 3 Cu; up to 1 Si; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale including alumina, nanometer scale sized particles distributed throughout the microstructure, the particles including at least one of NbC and TaC, and a stable essentially single phase FCC austenitic matrix microstructure that is essentially delta-ferrite-free and essentially BCC-phase-free.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: July 13, 2010
    Assignee: UT-Battelle, LLC
    Inventors: Yukinori Yamamoto, Michael L Santella, Michael P Brady, Philip J Maziasz, Chain-tsuan Liu
  • Patent number: 7744813
    Abstract: An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800° C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.
    Type: Grant
    Filed: January 4, 2007
    Date of Patent: June 29, 2010
    Assignee: UT-Battelle, LLC
    Inventors: Michael P. Brady, Bruce A. Pint, Chain-Tsuan Liu, Philip J. Maziasz, Yukinori Yamamoto, Zhao P. Lu
  • Publication number: 20080304996
    Abstract: An austenitic stainless steel HTUPS alloy includes, in weight percent: 15 to 30 Ni; 10 to 15 Cr; 2 to 5 Al; 0.6 to 5 total of at least one of Nb and Ta; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1 W; up to 0.5 Cu; up to 4 Mn; up to 1 Si; 0.05 to 0.15 C; up to 0.15 B; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni wherein said alloy forms an external continuous scale comprising alumina, nanometer scale sized particles distributed throughout the microstructure, said particles comprising at least one composition selected from the group consisting of NbC and TaC, and a stable essentially single phase fcc austenitic matrix microstructure, said austenitic matrix being essentially delta-ferrite-free and essentially BCC-phase-free.
    Type: Application
    Filed: April 16, 2008
    Publication date: December 11, 2008
    Applicant: UT-BATTELLE, LLC
    Inventors: Michael P. Brady, Michael L. Santella, Yukinori Yamamoto, Chain-tsuan Liu
  • Publication number: 20080292489
    Abstract: An austenitic stainless steel alloy includes, in weight percent: >4 to 15 Mn; 8 to 15 Ni; 14 to 16 Cr; 2.4 to 3 Al; 0.4 to 1 total of at least one of Nb and Ta; 0.05 to 0.2 C; 0.01 to 0.02 B; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1W; up to 3 Cu; up to 1 Si; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale including alumina, nanometer scale sized particles distributed throughout the microstructure, the particles including at least one of NbC and TaC, and a stable essentially single phase FCC austenitic matrix microstructure that is essentially delta-ferrite-free and essentially BCC-phase-free.
    Type: Application
    Filed: July 29, 2008
    Publication date: November 27, 2008
    Applicant: UT-BATTELLE, LLC
    Inventors: Yukinori Yamamoto, Michael L. Santella, Michael P. Brady, Philip J. Maziasz, Chain-Tsuan Liu
  • Publication number: 20080163957
    Abstract: An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800° C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.
    Type: Application
    Filed: January 4, 2007
    Publication date: July 10, 2008
    Applicant: UT-Battelle, LLC
    Inventors: Michael P. Brady, Bruce A. Pint, Chain-Tsuan Liu, Philip J. Maziasz, Yukinori Yamamoto, Zhao P. Lu
  • Patent number: 4253872
    Abstract: A novel iridium alloy containing 100-500 ppm thorium has enhanced impact properties over undoped iridium and over prior art iridium alloys.
    Type: Grant
    Filed: February 16, 1977
    Date of Patent: March 3, 1981
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Chain-Tsuan Liu, Henry Inouye, Anthony C. Schaffhauser, Calvin L. White