Patents by Inventor Chan-Li Hsueh

Chan-Li Hsueh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11235563
    Abstract: A resin composition is provided. The resin composition includes a styrene-acrylonitrile based copolymer of 75 parts by weight to 90 parts by weight and rubber particles of 10 parts by weight to 25 parts by weight. The resin composition includes an oligomer trimer. The oligomer trimer includes at least one monomer unit selected from the group consisting of a styrene based monomer unit and an acrylonitrile based monomer unit. Wherein, a residual acrylonitrile based monomer is less than 5 ppm of the total weight of the resin composition. The ratio of the peak area of acetophenone to the peak area of air for the resin composition as analyzed by a thermal desorption gas chromatography mass spectrometer (TD-GC-MS) is 100 to 300.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: February 1, 2022
    Assignee: CHIMEI CORPORATION
    Inventors: Chan-Li Hsueh, Shih-Wei Huang, Wen-Yi Su
  • Publication number: 20190202183
    Abstract: A resin composition is provided. The resin composition includes a styrene-acrylonitrile based copolymer of 75 parts by weight to 90 parts by weight and rubber particles of 10 parts by weight to 25 parts by weight. The resin composition includes an oligomer trimer. The oligomer trimer includes at least one monomer unit selected from the group consisting of a styrene based monomer unit and an acrylonitrile based monomer unit. Wherein, a residual acrylonitrile based monomer is less than 5 ppm of the total weight of the resin composition. The ratio of the peak area of acetophenone to the peak area of air for the resin composition as analyzed by a thermal desorption gas chromatography mass spectrometer (TD-GC-MS) is 100 to 300.
    Type: Application
    Filed: December 28, 2018
    Publication date: July 4, 2019
    Inventors: Chan-Li HSUEH, Shih-Wei HUANG, Wen-Yi SU
  • Publication number: 20180072839
    Abstract: A resin composition for an optical material contains a thiol compound and an isocyanate compound. The thiol compound includes a trithiol compound and a tetrathiol compound, and based on 100% of the total mole equivalent of the thiol group of the thiol compound, the total mole equivalent of the thiol group of the trithiol compound is fro 85% to 95%, and the total mole equivalent of the thiol group of the tetrathiol compound is from 5% to 15%. The isocyanate compound includes dicyclohexylmethane diisocyanate, and based on 100% of the total mole equivalent of the isocyanate group of the isocyanate compound, the total mole equivalent of the isocyanate group of the dicyclohexylmethane diisocyanate is from 90% to 100%.
    Type: Application
    Filed: August 20, 2017
    Publication date: March 15, 2018
    Applicant: Chi Mei Corporation
    Inventors: Hsiu-Mei Wu, Yi-Hsiu Huang, Chan-Li Hsueh
  • Patent number: 9520596
    Abstract: A resin for a negative electrode of a lithium ion battery including a core section and a cladding layer covering the surface of the core section are provided. The cladding layer is obtained by reacting a first monomer mixture. The first monomer mixture includes an ethylenically unsaturated carboxylic acid ester monomer, a first aromatic vinyl monomer, and an ethylenically unsaturated carboxylic acid monomer. Based on 100 wt % of the first monomer mixture, a content of the ethylenically unsaturated carboxylic acid ester monomer is from 45 to 80 wt %, a content of the first aromatic vinyl monomer is from 5 to 25 wt %, and a content of the ethylenically unsaturated carboxylic acid monomer is from 10 to 43 wt %.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: December 13, 2016
    Assignee: Chi Mei Corporation
    Inventors: Hsiu-Mei Wu, Chan-Li Hsueh, Chung-Ping Li
  • Publication number: 20150287994
    Abstract: A resin for a negative electrode of a lithium ion battery including a core section and a cladding layer covering the surface of the core section are provided. The cladding layer is obtained by reacting a first monomer mixture. The first monomer mixture includes an ethylenically unsaturated carboxylic acid ester monomer, a first aromatic vinyl monomer, and an ethylenically unsaturated carboxylic acid monomer. Based on 100 wt % of the first monomer mixture, a content of the ethylenically unsaturated carboxylic acid ester monomer is from 45 to 80 wt %, a content of the first aromatic vinyl monomer is from 5 to 25 wt %, and a content of the ethylenically unsaturated carboxylic acid monomer is from 10 to 43 wt %.
    Type: Application
    Filed: September 3, 2014
    Publication date: October 8, 2015
    Inventors: Hsiu-Mei Wu, Chan-Li Hsueh, Chung-Ping Li
  • Patent number: 9076572
    Abstract: A conductive paste is provided, which includes 3 wt % to 20 wt % of epoxy resin, 10 wt % to 25 wt % of solvent, 0.3 wt % to 5 wt % of latent curing agent, 3.5 wt % to 35 wt % of flaky metal powder surface-treated by saturated fatty acid, and 35 wt % to 75 wt % of flaky metal powder surface-treated by unsaturated fatty acid.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: July 7, 2015
    Assignee: Chi Mei Corporation
    Inventors: Chan-Li Hsueh, Chung-Ping Li, Chu-Yun Cheng
  • Publication number: 20140326929
    Abstract: A conductive paste is provided, which includes 3 wt % to 20 wt % of epoxy resin, 10 wt % to 25 wt % of solvent, 0.3 wt % to 5 wt % of latent curing agent, 3.5 wt % to 35 wt % of flaky metal powder surface-treated by saturated fatty acid, and 35 wt % to 75 wt % of flaky metal powder surface-treated by unsaturated fatty acid.
    Type: Application
    Filed: March 20, 2014
    Publication date: November 6, 2014
    Applicant: Chi Mei Corporation
    Inventors: Chan-Li Hsueh, Chung-Ping Li, Chu-Yun Cheng
  • Patent number: 8658055
    Abstract: Solid-state hydrogen fuel with a polymer matrix and fabrication methods thereof are presented. The solid-state hydrogen fuel includes a polymer matrix, and a crushed mixture of a solid chemical hydride and a solid-state catalyst uniformly dispersed in the polymer matrix. The fabrication method for the solid-state hydrogen fuel includes crushing and mixing a solid chemical hydride and a solid-state catalyst in a crushing/mixing machine, and adding the polymer matrix into the mixture of the solid chemical hydride and the solid-state catalyst to process a flexible solid-state hydrogen fuel. Moreover, various geometric and/or other shapes may be formed and placed into suitable vessels to react with a particular liquid and provide a steady rate of hydrogen release.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: February 25, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Chan-Li Hsueh, Jie-Ren Ku, Shing-Fen Tsai, Ya-Yi Hsu, Cheng-Yen Chen, Reiko Ohara, Ming-Shan Jeng, Fanghei Tsau
  • Publication number: 20130337350
    Abstract: A power supply device is provided. The power supply device includes a fuel cell, a hydrogen generator, a check valve and an exhaust valve. The fuel cell has a hydrogen inlet and a hydrogen outlet. The hydrogen generator is connected to the hydrogen inlet and used for generating hydrogen. The check valve is disposed in the hydrogen inlet and used for preventing the hydrogen within the fuel cell from flowing to the hydrogen generator, and preventing exterior air from entering the fuel cell. The exhaust valve is disposed in the hydrogen outlet for exhausting the hydrogen within the fuel cell.
    Type: Application
    Filed: August 19, 2013
    Publication date: December 19, 2013
    Applicant: Industrial Technology Research Institute
    Inventors: Jie-Ren Ku, Chan-Li Hsueh, Ya-Yi Hsu, Fang-Hei Tsau, Reiko Ohara, Shing-Fen Tsai, Chien-Chang Hung, Ming-Shan Jeng, Cheng-Yen Chen
  • Patent number: 8535838
    Abstract: A power supply device is provided. The power supply device includes a fuel cell, a hydrogen generator, a check valve and an exhaust valve. The fuel cell has a hydrogen inlet and a hydrogen outlet. The hydrogen generator is connected to the hydrogen inlet and used for generating hydrogen. The check valve is disposed in the hydrogen inlet and used for preventing the hydrogen within the fuel cell from flowing to the hydrogen generator, and preventing exterior air from entering the fuel cell. The exhaust valve is disposed in the hydrogen outlet for exhausting the hydrogen within the fuel cell.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: September 17, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Jie-Ren Ku, Chan-Li Hsueh, Ya-Yi Hsu, Fang-hei Tsau, Reiko Ohara, Shing-Fen Tsai, Chien-Chang Hung, Ming-Shan Jeng, Cheng-Yen Chen
  • Publication number: 20130129572
    Abstract: A hydrogen-generating equipment including a hydrogen-generating device and a hydrogen-purifying device is provided. The hydrogen-generating device is capable of generating a hydrogen-gas, a water-vapor mixed in the hydrogen-gas and a toxic-gas mixed in the hydrogen-gas. The hydrogen-purifying device includes a water-vapor filter unit and a toxic-gas filter unit. The hydrogen-gas passes through the water-vapor filter unit to remove the water-vapor mixed in the hydrogen-gas. The toxic-gas filter unit includes a filtering assembly. The surface of the filtering assembly has a plurality of hydroxyls. After the hydrogen-gas passes through the water-vapor filter unit, the hydrogen-gas passes through the toxic-gas filter unit, and the toxic-gas mixed in the hydrogen-gas reacts with a plurality of hydroxyls on a surface of the filtering assembly to remove the toxic-gas.
    Type: Application
    Filed: November 15, 2012
    Publication date: May 23, 2013
    Inventors: Yu-Wen Lu, Chan-Li Hsueh, Jie-Ren Ku, Po-Kuei Chou, Fang-Hei Tsau
  • Publication number: 20120309612
    Abstract: Disclosed is a magnetic catalyst formed by a single or multiple nano metal shells wrapping a carrier, wherein at least one of the metal shells is iron, cobalt, or nickel. The magnetic catalyst with high catalyst efficiency can be applied in a hydrogen supply device, and the device can be connected to a fuel cell. Because the magnetic catalyst can be recycled by a magnet after generating hydrogen, the practicability of the noble metals such as Ru with high catalyst efficiency is dramatically enhanced.
    Type: Application
    Filed: August 10, 2012
    Publication date: December 6, 2012
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chan-Li HSUEH, Cheng-Hong LIU, Jie-Ren KU, Ya-Yi HSU, Cheng-Yen CHEN, Reiko OHARA, Shing-Fen TSAI, Chien-Chang HUNG, Ming-Shan JENG
  • Publication number: 20120240455
    Abstract: An embodiment of the invention provides a solid hydrogen fuel with an initial heating mechanism, including: a solid hydrogen fuel; and a heating promoter disposed on at least one surface of the solid hydrogen fuel, wherein the heating promoter proceeds with an exothermal reaction when contacted with water. Another embodiment of the invention provides: a solid hydrogen fuel with an initial heating mechanism, including a solid hydrogen fuel; and an electrical heating element in contact with the solid hydrogen fuel.
    Type: Application
    Filed: August 9, 2011
    Publication date: September 27, 2012
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Jie-Ren KU, Shing-Fen TSAI, Chan-Li HSUEH, Cheng-Yen CHEN, Yu-Wen LU, Fanghei TSAU, Chung-Ching TU, Chia-Cheng WU, Yih-Hang CHEN
  • Publication number: 20120244065
    Abstract: Disclosed is a magnetic catalyst formed by a single or multiple nano metal shells wrapping a carrier, wherein at least one of the metal shells is iron, cobalt, or nickel. The magnetic catalyst with high catalyst efficiency can be applied in a hydrogen supply device, and the device can be connected to a fuel cell. Because the magnetic catalyst can be recycled by a magnet after generating hydrogen, the practicability of the noble metals such as Ru with high catalyst efficiency is dramatically enhanced.
    Type: Application
    Filed: June 5, 2012
    Publication date: September 27, 2012
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chan-Li HSUEH, Cheng-Hong LIU, Jie-Ren KU, Ya-Yi HSU, Cheng-Yen CHEN, Reiko OHARA, Shing-Fen TSAI, Chien-Chang HUNG, Ming-Shan JENG
  • Publication number: 20110217456
    Abstract: Disclosed is a magnetic catalyst formed by a single or multiple nano metal shells wrapping a carrier, wherein at least one of the metal shells is iron, cobalt, or nickel. The magnetic catalyst with high catalyst efficiency can be applied in a hydrogen supply device, and the device can be connected to a fuel cell. Because the magnetic catalyst can be recycled by a magnet after generating hydrogen, the practicability of the noble metals such as Ru with high catalyst efficiency is dramatically enhanced.
    Type: Application
    Filed: May 13, 2011
    Publication date: September 8, 2011
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chan-Li HSUEH, Cheng-Hong LIU, Jie-Ren KU, Ya-Yi HSU, Cheng-Yen CHEN, Reiko OHARA, Shing-Fen TSAI, Chien-Chang HUNG, Ming-Shan JENG
  • Patent number: 8003267
    Abstract: Disclosed is a flexible power supply including a hydrogen supply device connected to a flexible fuel cell, wherein the hydrogen supply device includes a moldable hydrogen fuel. In one embodiment, the flexible fuel cell is a sheet structure, and the hydrogen supply device is a flexible flat bag, wherein the fuel cell and the hydrogen supply device are adhered to complete a sheet of a flexible power supply. The sheet of flexible power supply can be put in the pocket of cloth or baggage, or directly sewn on the outside of cap or overcoat.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: August 23, 2011
    Assignee: Industrial Technology Research Institute
    Inventors: Jie-Ren Ku, Chan-Li Hsueh, Ya-Yi Hsu, Cheng-Yen Chen, Shing-Fen Tsai, Reiko Ohara, FangHei Tsau, Chien-Chang Hung, Ming-Shan Jeng
  • Publication number: 20110142754
    Abstract: An one-off and adjustment method of hydrogen releasing from chemical hydride. The “one/off” of hydrogen release is controlled by the “contact/non-contact” procedures between the reactants. First, at least a hydride powder, a catalyst powder and a water-containing reactant are provided, and at least any two of three are mixed to form a mixture. Hydrogen gas is generated by adjusting a contact area between the mixture and the remaining one. The hydrogen-releasing reaction is terminated when a non-contacting state between the mixture and the remaining one occurs. Alternatively, an inhibitor or an inhibiting method could be used for suppressing or terminating the hydrogen-releasing reaction. The hydrogen-releasing rate could be controlled and adjusted by the extent of suppression.
    Type: Application
    Filed: August 27, 2010
    Publication date: June 16, 2011
    Inventors: Jie-Ren KU, Chan-Li HSUEH, Cheng-Yen CHEN, Ming-Shan JENG, Fang-hei TSAU
  • Publication number: 20110143235
    Abstract: A power supply device is provided. The power supply device includes a fuel cell, a hydrogen generator, a check valve and an exhaust valve. The fuel cell has a hydrogen inlet and a hydrogen outlet. The hydrogen generator is connected to the hydrogen inlet and used for generating hydrogen. The check valve is disposed in the hydrogen inlet and used for preventing the hydrogen within the fuel cell from flowing to the hydrogen generator, and preventing exterior air from entering the fuel cell. The exhaust valve is disposed in the hydrogen outlet for exhausting the hydrogen within the fuel cell.
    Type: Application
    Filed: July 30, 2010
    Publication date: June 16, 2011
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Jie-Ren Ku, Chan-Li Hsueh, Ya-Yi Hsu, Fang-hei Tsau, Reiko Ohara, Shing-Fen Tsai, Chien-Chang Hung, Ming-Shan Jeng, Cheng-Yen Chen
  • Publication number: 20110143240
    Abstract: A hydrogen generation system comprising solid hydrogen fuel, a liquid absorbent material, and a phase-change material is provided. When the liquid (usually water, alcohol, or aqueous solution of alcohol, aqueous solution of salt or aqueous solution of acid) in the absorbent material contacts with the solid hydrogen fuel, the solid hydrogen fuel will react with the liquid to release hydrogen and generate heat. The heat as generated will accumulate to increase the reaction temperature, and then boost the hydrogen-releasing rate. The phase-change material is adjacent to the solid hydrogen fuel for absorbing and storing the reaction heat, so as to stabilize the reaction temperature. Therefore, the hydrogen-releasing rate is kept as constant to achieve a steady hydrogen flow.
    Type: Application
    Filed: July 30, 2010
    Publication date: June 16, 2011
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chan-Li Hsueh, Jie-Ren Ku, Cheng-Yen Chen, Ming-Shan Jeng, Fang-hei Tsau
  • Patent number: 7959898
    Abstract: Disclosed is super water absorbent polymers applied to contain water, and the polymers may further collocate with water absorbent cotton materials to accelerate water absorbent rates. The described water absorbent materials are combined with solid hydrogen fuel to complete a stable hydrogen supply device. Performance of the hydrogen supply device is not effected by inverting or tilting thereof. Even if inverting or tilting the device, the water contained in the water absorbent materials does not flow out from the device. As such, the MEA film in the fuel cell connected to the hydrogen supply device will not blocked by the water, thereby avoiding the fuel cell performance degradation even breakdown.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: June 14, 2011
    Assignee: Industrial Technology Research Institute
    Inventors: Chan-Li Hsueh, Jie-Ren Ku, Ya-Yi Hsu, Shing-Fen Tsai, Reiko Ohara, Chien-Chang Hung, Cheng-Yen Chen, Ming-Shan Jeng, Fanghei Tsau