Patents by Inventor Chandan Lakshmanaiah

Chandan Lakshmanaiah has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11447017
    Abstract: An electrical regeneration and vehicle deceleration control method includes operating an electrified powertrain in normal or maximum regeneration modes associated with lesser and greater electrical regeneration and vehicle deceleration rates, respectively, receiving an input from a driver of the vehicle indicative of a request to enable the maximum regeneration mode, detecting a status indicative of an availability of the maximum regeneration mode, and in response to receiving the request and based on the status of the maximum regeneration mode and a current vehicle deceleration rate: (i) operating the electrified powertrain in either the maximum regeneration mode or a normal regeneration mode, (ii) selectively outputting a message to the driver indicative of the status of the maximum regeneration mode, and (iii) selectively commanding a hydraulic brake system of the vehicle to generate brake force based on a driver-expected vehicle deceleration rate associated with the operative regeneration mode.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: September 20, 2022
    Assignee: FCA US LLC
    Inventors: Nadirsh Patel, James R Hollowell, Divya E Gorecki, Chandan Lakshmanaiah, Zachary C Rogalski, Richard Roy
  • Publication number: 20210237582
    Abstract: An electrical regeneration and vehicle deceleration control method comprises operating an electrified powertrain in normal or maximum regeneration modes associated with lesser and greater electrical regeneration and vehicle deceleration rates, respectively, receiving an input from a driver of the vehicle indicative of a request to enable the maximum regeneration mode, detecting a status indicative of an availability of the maximum regeneration mode, and in response to receiving the request and based on the status of the maximum regeneration mode and a current vehicle deceleration rate: (i) operating the electrified powertrain in either the maximum regeneration mode or a normal regeneration mode, (ii) selectively outputting a message to the driver indicative of the status of the maximum regeneration mode, and (iii) selectively commanding a hydraulic brake system of the vehicle to generate brake force based on a driver-expected vehicle deceleration rate associated with the operative regeneration mode.
    Type: Application
    Filed: January 30, 2020
    Publication date: August 5, 2021
    Inventors: Nadirsh Patel, James R. Hollowell, Divya E. Gorecki, Chandan Lakshmanaiah, Zachary C. Rogalski, Richard Roy
  • Patent number: 9150214
    Abstract: A technique includes receiving, at a controller of a vehicle, the controller including one or more processors, a first request to calibrate a park lock system of the vehicle. The calibration can include commanding, by the controller, a first actuator to move a second actuator to maximum engagement/disengagement positions indicating maximum engagement/disengagement of a park pawl with/from a park gear of a transmission. The calibration can include determining, at the controller, full engagement/disengagement positions for the second actuator based on the maximum engagement/disengagement positions. The controller can then control the engagement/disengagement of the park lock system using the full engagement/disengagement positions for the second actuator, respectively.
    Type: Grant
    Filed: July 18, 2013
    Date of Patent: October 6, 2015
    Assignee: FCA US LLC
    Inventors: Feisel Weslati, Behrouz Ashrafi, Chandan Lakshmanaiah, Salim Hamam
  • Publication number: 20150025750
    Abstract: A technique includes receiving, at a controller of a vehicle, the controller including one or more processors, a first request to calibrate a park lock system of the vehicle. The calibration can include commanding, by the controller, a first actuator to move a second actuator to maximum engagement/disengagement positions indicating maximum engagement/disengagement of a park pawl with/from a park gear of a transmission. The calibration can include determining, at the controller, full engagement/disengagement positions for the second actuator based on the maximum engagement/disengagement positions. The controller can then control the engagement/disengagement of the park lock system using the full engagement/disengagement positions for the second actuator, respectively.
    Type: Application
    Filed: July 18, 2013
    Publication date: January 22, 2015
    Inventors: Feisel Weslati, Behrouz Ashrafi, Chandan Lakshmanaiah, Salim Hamam
  • Patent number: 8922144
    Abstract: Methods and systems of processing sensor signals to determine motion of a motor shaft are disclosed. This disclosure relates to the processing of sequences of pulses from a sensor for computing the motion of an electric motor output shaft. Furthermore, this disclosure relates to the processing of two sequences of pulses from sensor outputs, which may be separated by only a few electrical degrees, to compute the motion of an electrical motor output shaft while using a limited bandwidth controller. Motor shaft direction, displacement, speed, phase, and phase offset may be determined from processing the sensor signals.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: December 30, 2014
    Assignee: Chrysler Group LLC
    Inventors: Feisel Weslati, Behrouz Ashrafi, Chandan Lakshmanaiah
  • Publication number: 20130342140
    Abstract: Methods and systems of processing sensor signals to determine motion of a motor shaft are disclosed. This disclosure relates to the processing of sequences of pulses from a sensor for computing the motion of an electric motor output shaft. Furthermore, this disclosure relates to the processing of two sequences of pulses from sensor outputs, which may be separated by only a few electrical degrees, to compute the motion of an electrical motor output shaft while using a limited bandwidth controller. Motor shaft direction, displacement, speed, phase, and phase offset may be determined from processing the sensor signals.
    Type: Application
    Filed: June 25, 2012
    Publication date: December 26, 2013
    Applicant: CHRYSLER GROUP LLC
    Inventors: Feisel Weslati, Behrouz Ashrafi, Chandan Lakshmanaiah