Patents by Inventor Chandra U. Singh

Chandra U. Singh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5612895
    Abstract: A method of rational drug design includes simulating polypeptides in a way that predicts the most probable secondary and/or tertiary structures of a polypeptide, e.g., an oligopeptide, without any presumptions as to the conformation of the underlying primary or secondary structure. The method involves computer simulation of the polypeptide, and more particularly simulating a real-size primary structure in an aqueous environment, shrinking the size of the polypeptide isobarically and isothermally, and expanding the simulated polypeptide to its real size in selected time periods. A useful set of tools, termed Balaji plots, energy conformational maps, and probability maps, assist in identifying those portions of the predicted peptide structure that are most flexible or most rigid. The rational design of novel compounds, useful as drugs, e.g., bioactive peptidomimetic compounds, and constrained analogs thereof, is thus made possible using the simulation methods and tools of the described invention.
    Type: Grant
    Filed: April 21, 1995
    Date of Patent: March 18, 1997
    Inventors: Vitukudi N. Balaji, Chandra U. Singh
  • Patent number: 5579250
    Abstract: A method of rational drug design includes simulating polypeptides in a way that predicts the most probable secondary and/or tertiary structures of a polypeptide, e.g., an oligopeptide, without any presumptions as to the conformation of the underlying primary or secondary structure. The method involves computer simulation of the polypeptide, and more particularly simulating a real-size primary structure in an aqueous environment, shrinking the size of the polypeptide isobarically and isothermally, and expanding the simulated polypeptide to its real size in selected time periods. A useful set of tools, termed Balaji plots, energy conformational maps, and probability maps, assist in identifying those portions of the predicted peptide structure that are most flexible or most rigid. The rational design of novel compounds, useful as drugs, e.g., bioactive peptidomimetic compounds, and constrained analogs thereof, is thus made possible using the simulation methods and tools of the described invention.
    Type: Grant
    Filed: April 24, 1995
    Date of Patent: November 26, 1996
    Inventors: Vitukudi N. Balaji, Chandra U. Singh
  • Patent number: 5331573
    Abstract: A method of rational drug design includes simulating polypeptides in a way that predicts the most probable secondary and/or tertiary structures of a polypeptide, e.g., an oligopeptide, without any presumptions as to the conformation of the underlying primary or secondary structure. The method involves computer simulation of the polypeptide, and more particularly simulating a real-size primary structure in an aqueous environment, shrinking the size of the polypeptide isobarically and isothermally, and expanding the simulated polypeptide to its real size in selected time periods. A useful set of tools, termed Balaji plots, energy conformational maps, and probability maps, assist in identifying those portions of the predicted peptide structure that are most flexible or most rigid. The rational design of novel compounds, useful as drugs, e.g., bioactive peptidomimetic compounds, and constrained analogs thereof, is thus made possible using the simulation methods and tools of the described invention.
    Type: Grant
    Filed: December 14, 1990
    Date of Patent: July 19, 1994
    Inventors: Vitukudi N. Balaji, Chandra U. Singh