Patents by Inventor Chandra V. Mouli

Chandra V. Mouli has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7235468
    Abstract: FinFET devices formed with a Silicon On Insulator (SOI) technology with reduced Drain Induced Barrier Lowering (DIBL) characteristics and methods for producing the same. The methods involve dopant implants into the insulator layer, thereby creating borophosphosilicate glass (BPSG) diffusion sources within the insulation layer underlying the active regions of the SOI wafer. Backend high temperature processing steps induce diffusion of the dopants contained in the diffusion source into the active regions, thereby forming a retrograde dopant profile extending towards the channel region. The method can be selectively applied to selected portions of a wafer to tailor device characteristics, such as for memory cells.
    Type: Grant
    Filed: August 10, 2005
    Date of Patent: June 26, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Chandra V. Mouli
  • Patent number: 7195995
    Abstract: A method of manufacturing a memory device addressing reliability and refresh characteristics through the use of a multilayered doped conductor, and a method making is described. The multilayered doped conductor creates a high dopant concentration in the active area close to the channel region. The rich dopant layer created by the multilayered doped conductor is less susceptible to depletion from trapped charges in the oxide. This improves device reliability at burn-in and lowers junction leakage, thereby providing a longer period between refresh cycles.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: March 27, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Chandra V. Mouli
  • Patent number: 7189662
    Abstract: The invention includes methods of forming and/or passivating semiconductor constructions. In particular aspects, various oxides of a semiconductor substrate can be formed by exposing semiconductive material of the substrate to deuterium-enriched steam. In other aspects, a semiconductor construction is passivated by subjecting the construction to an anneal at a temperature of greater than or equal to 350° C. while exposing the construction to a deuterium-enriched ambient.
    Type: Grant
    Filed: August 24, 2004
    Date of Patent: March 13, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Kunal R. Parekh, Chandra V. Mouli, M. Ceredig Roberts, Fernando Gonzalez
  • Patent number: 7122411
    Abstract: A CMOS device formed with a Silicon On Insulator (SOI) technology with reduced Drain Induced Barrier Lowering (DIBL) characteristics and a method for producing the same. The method involves a high energy, high dose implant of boron and phosphorus through the p- and n-wells, into the insulator layer, thereby creating a borophosphosilicate glass (BPSG) structure within the insulation layer underlying the p- and n-wells of the SOI wafer. Backend high temperature processing steps induce diffusion of the boron and phosphorus contained in the BPSG into the p- and n-wells, thereby forming a retrograde dopant profile in the wells. The retrograde dopant profile reduces DIBL and also provides recombination centers adjacent the insulator layer and the active layer to thereby reduce floating body effects for the CMOS device.
    Type: Grant
    Filed: August 19, 2004
    Date of Patent: October 17, 2006
    Assignee: Micron Technology, Inc
    Inventor: Chandra V. Mouli
  • Patent number: 7009250
    Abstract: FinFET devices formed with a Silicon On Insulator (SOI) technology with reduced Drain Induced Barrier Lowering (DIBL) characteristics and methods for producing the same. The methods involve dopant implants into the insulator layer, thereby creating borophosphosilicate glass (BPSG) diffusion sources within the insulation layer underlying the active regions of the SOI wafer. Backend high temperature processing steps induce diffusion of the dopants contained in the diffusion source into the active regions, thereby forming a retrograde dopant profile extending towards the channel region. The method can be selectively applied to selected portions of a wafer to tailor device characteristics, such as for memory cells.
    Type: Grant
    Filed: August 20, 2004
    Date of Patent: March 7, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Chandra V. Mouli
  • Patent number: 6912439
    Abstract: Systems and methods of modeling a best-guess semiconductor process flow for fabricating a desired semiconductor device are provided. The best-guess process flow is modeled using an inverse modeling technique. This technique reverse engineers a desired semiconductor device to synthesize a model of a fabrication process that is likely to produce the desired semiconductor device. First, a desired device having one or more desired characteristics is modeled. Then, various process and material parameters, constraints, and actual measured data are used to synthesize one or more unique software models that represent a process flow likely to fabricate the desired device. If more than one process flow is modeled, various parameters are modified iteratively until a unique process flow model is synthesized.
    Type: Grant
    Filed: June 8, 2004
    Date of Patent: June 28, 2005
    Assignee: Micron Technology, Inc.
    Inventor: Chandra V. Mouli
  • Patent number: 6905918
    Abstract: A CMOS device formed with a Silicon On Insulator (SOI) technology with reduced Drain Induced Barrier Lowering (DIBL) characteristics and a method for producing the same. The method involves a high energy, high dose implant of boron and phosphorus through the p- and n-wells, into the insulator layer, thereby creating a borophosphosilicate glass (BPSG) structure within the insulation layer underlying the p- and n-wells of the SOI wafer. Backend high temperature processing steps induce diffusion of the boron and phosphorus contained in the BPSG into the p- and n-wells, thereby forming a retrograde dopant profile in the wells. The retrograde dopant profile reduces DIBL and also provides recombination centers adjacent the insulator layer and the active layer to thereby reduce floating body effects for the CMOS device.
    Type: Grant
    Filed: December 29, 2003
    Date of Patent: June 14, 2005
    Assignee: Micron Technology, Inc.
    Inventor: Chandra V. Mouli
  • Patent number: 6872640
    Abstract: CMOS devices formed with a Silicon On Insulator (SOI) technology with reduced Drain Induced Barrier Lowering (DIBL) characteristics and a method for producing the same. The method involves a high energy, high dose implant through openings in a masking layer and through channel regions of the p- and n-wells, into the insulator layer, thereby creating a borophosphosilicate glass (BPSG) diffusion source within the insulation layer underlying the gate regions of the SOI wafer substantially between the source and drain. Backend high temperature processing steps induce diffusion of the dopants contained in the diffusion source into the p- and n-wells, thereby forming asymmetric retrograde dopant profiles in the channel under the gate. The method can be selectively applied to selected portions of a wafer to tailor device characteristics, such as for memory cells.
    Type: Grant
    Filed: March 16, 2004
    Date of Patent: March 29, 2005
    Assignee: Micron Technology, Inc.
    Inventor: Chandra V. Mouli
  • Patent number: 6858534
    Abstract: A method of manufacturing a memory device addressing reliability and refresh characteristics through the use of a multilayered doped conductor described. The multilayered doped conductor creates a high dopant concentration in the active area close to the channel region. The rich dopant layer created by the multilayered doped conductor is less suspectible to depletion from trapped charges in the oxide. This improves device reliability at burn-in and lowers junction leakage, thereby providing a longer period between refresh cycle.
    Type: Grant
    Filed: August 28, 2003
    Date of Patent: February 22, 2005
    Assignee: Micron Technology, Inc.
    Inventor: Chandra V. Mouli
  • Publication number: 20040220693
    Abstract: Systems and methods of modeling a best-guess semiconductor process flow for fabricating a desired semiconductor device are provided. The best-guess process flow is modeled using an inverse modeling technique. This technique reverse engineers a desired semiconductor device to synthesize a model of a fabrication process that is likely to produce the desired semiconductor device. First, a desired device having one or more desired characteristics is modeled. Then, various process and material parameters, constraints, and actual measured data are used to synthesize one or more unique software models that represent a process flow likely to fabricate the desired device. If more than one process flow is modeled, various parameters are modified iteratively until a unique process flow model is synthesized.
    Type: Application
    Filed: June 8, 2004
    Publication date: November 4, 2004
    Applicant: Micron Technology, Inc.
    Inventor: Chandra V. Mouli
  • Patent number: 6772035
    Abstract: Systems and methods of modeling a best-guess semiconductor process flow for fabricating a desired semiconductor device are provided. The best-guess process flow is modeled using an inverse modeling technique. This technique reverse engineers a desired semiconductor device to synthesize a model of a fabrication process that is likely to produce the desired semiconductor device. First, a desired device having one or more desired characteristics is modeled. Then, various process and material parameters, constraints, and actual measured data are used to synthesize one or more unique software models that represent a process flow likely to fabricate the desired device. If more than one process flow is modeled, various parameters are modified iteratively until a unique process flow model is synthesized.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: August 3, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Chandra V. Mouli
  • Publication number: 20040142520
    Abstract: A CMOS device formed with a Silicon On Insulator (SOI) technology with reduced Drain Induced Barrier Lowering (DIBL) characteristics and a method for producing the same. The method involves a high energy, high dose implant of boron and phosphorus through the p- and n-wells, into the insulator layer, thereby creating a borophosphosilicate glass (BPSG) structure within the insulation layer underlying the p- and n-wells of the SOI wafer. Backend high temperature processing steps induce diffusion of the boron and phosphorus contained in the BPSG into the p- and n-wells, thereby forming a retrograde dopant profile in the wells. The retrograde dopant profile reduces DIBL and also provides recombination centers adjacent the insulator layer and the active layer to thereby reduce floating body effects for the CMOS device.
    Type: Application
    Filed: December 29, 2003
    Publication date: July 22, 2004
    Inventor: Chandra V. Mouli
  • Patent number: 6716682
    Abstract: A CMOS device formed with a Silicon On Insulator (SOI) technology with reduced Drain Induced Barrier Lowering (DIBL) characteristics and a method for producing the same. The method involves a high energy, high dose implant of boron and phosphorus through the p- and n-wells, into the insulator layer, thereby creating a borophosphosilicate glass (BPSG) structure within the insulation layer underlying the p- and n-wells of the SOI wafer. Backend high temperature processing steps induce diffusion of the boron and phosphorus contained in the BPSG into the p- and n-wells, thereby forming a retrograde dopant profile in the wells. The retrograde dopant profile reduces DIBL and also provides recombination centers adjacent the insulator layer and the active layer to thereby reduce floating body effects for the CMOS device.
    Type: Grant
    Filed: October 10, 2002
    Date of Patent: April 6, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Chandra V. Mouli
  • Publication number: 20040042283
    Abstract: A memory device addressing reliability and refresh characteristics through the use of a multilayered doped conductor, and a method making are disclosed. The multilayered doped conductor creates a high dopant concentration in the active area close to the channel region. The rich dopant layer created by the multilayered doped conductor is less susceptible to depletion from trapped charges in the oxide. This improves device reliability at burn-in and lowers junction leakage, thereby providing a longer period between refresh cycles.
    Type: Application
    Filed: August 28, 2003
    Publication date: March 4, 2004
    Inventor: Chandra V. Mouli
  • Patent number: 6693012
    Abstract: A process for the fabrication of an integrated circuit which provides a FET device having reduced GIDL current is described. A semiconductor substrate is provided wherein active regions are separated by an isolation region, and a gate oxide layer is form on the active regions. Gate electrodes are formed upon the gate oxide layer in the active regions. An angled, high dose, ion implant is performed to selectively dope the gate oxide layer beneath an edge of each gate electrode in a gate-drain overlap region, and the fabrication of the integrated circuit is completed.
    Type: Grant
    Filed: December 27, 2001
    Date of Patent: February 17, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Chandra V. Mouli, Ceredig Roberts
  • Patent number: 6670682
    Abstract: A memory device addressing reliability and refresh characteristics through the use of a multilayered doped conductor, and a method making are disclosed. The multilayered doped conductor creates a high dopant concentration in the active area close to the channel region. The rich dopant layer created by the multilayered doped conductor is less susceptible to depletion from trapped charges in the oxide. This improves device reliability at burn-in and lowers junction leakage, thereby providing a longer period between refresh cycles.
    Type: Grant
    Filed: August 29, 2002
    Date of Patent: December 30, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Chandra V. Mouli
  • Publication number: 20030216827
    Abstract: Systems and methods of modeling a best-guess semiconductor process flow for fabricating a desired s semiconductor device are provided. The best-guess process flow is modeled using an inverse modeling technique. This technique reverse engineers a desired semiconductor device to synthesize a model of a fabrication process that is likely to produce the desired semiconductor device. First, a desired device having one or more desired characteristics is modeled. Then, various process and material parameters, constraints, and actual measured data are used to synthesize one or more unique software models that represent a process flow likely to fabricate the desired device. If more than one process flow is modeled, various parameters are modified iteratively until a unique process flow model is synthesized.
    Type: Application
    Filed: May 17, 2002
    Publication date: November 20, 2003
    Applicant: Micron Technology, Inc.
    Inventor: Chandra V. Mouli
  • Patent number: 6635928
    Abstract: A CMOS device formed with a Silicon On Insulator (SOI) technology with reduced Drain Induced Barrier Lowering (DIBL) characteristics and a method for producing the same. The method involves a high energy, high dose implant of boron and phosphorus through the p- and n-wells, into the insulator layer, thereby creating a borophosphosilicate glass (BPSG) structure within the insulation layer underlying the p- and n-wells of the SOI wafer. Backend high temperature processing steps induce diffusion of the boron and phosphorus contained in the BPSG into the p- and n-wells, thereby forming a retrograde dopant profile in the wells. The retrograde dopant profile reduces DIBL and also provides recombination centers adjacent the insulator layer and the active layer to thereby reduce floating body effects for the CMOS device.
    Type: Grant
    Filed: August 1, 2002
    Date of Patent: October 21, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Chandra V. Mouli
  • Patent number: 6548372
    Abstract: A shallow trench isolated integrated circuit may be formed by creating an oxidation enhancing region at the corner between a semiconductor structure surface and the trench. This region may be formed by ion implantation or solid source diffusion in a way which decreases crystallographic defects. As a result, oxidation at the trench may be enhanced without adverse effects on leakage currents. In some embodiments, the impurity laden region is formed first and the trench is etched through the region leaving an impurity laden remnant at the corner between the trench and the structure surface.
    Type: Grant
    Filed: October 10, 2000
    Date of Patent: April 15, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Chandra V. Mouli
  • Patent number: 6503783
    Abstract: A CMOS device formed with a Silicon On Insulator (SOI) technology with reduced Drain Induced Barrier Lowering (DIBL) characteristics and a method for producing the same. The method involves a high energy, high dose implant of boron and phosphorus through the p- and n-wells, into the insulator layer, thereby creating a borophosphosilicate glass (BPSG) structure within the insulation layer underlying the p- and n-wells of the SOI wafer. Backend high temperature processing steps induce diffusion of the boron and phosphorus contained in the BPSG into the p- and n-wells, thereby forming a retrograde dopant profile in the wells. The retrograde dopant profile reduces DIBL and also provides recombination centers adjacent the insulator layer and the active layer to thereby reduce floating body effects for the CMOS device.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: January 7, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Chandra V. Mouli