Patents by Inventor Chandrasekhar Sethumadhavan

Chandrasekhar Sethumadhavan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10972215
    Abstract: A communication system in which probabilistic signal shaping and FEC coding are jointly applied in a manner that enables the use of substantially any constellation template, e.g., a template in which the constellation symbols include a constellation symbol of zero amplitude and/or are arranged in an asymmetric manner. In an example embodiment, the transmitter's electronic encoder can be configured to apply two different respective shaping codes to the information bits and to the corresponding parity bits. The resulting shaped streams can then be appropriately multiplexed and transmitted over the optical communication channel to realize a significant shaping gain. Advantageously, the constellation template(s), two distribution matchers, and FEC code can be flexibly selected and/or adapted to achieve nearly optimal system operation under substantially arbitrary (e.g., arbitrarily bad) channel conditions.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: April 6, 2021
    Assignee: NOKIA SOLUTIONS AND NETWORKS OY
    Inventors: Joon Ho Cho, Peter J. Winzer, Chandrasekhar Sethumadhavan
  • Publication number: 20190280809
    Abstract: A communication system in which probabilistic signal shaping and FEC coding are jointly applied in a manner that enables the use of substantially any constellation template, e.g., a template in which the constellation symbols include a constellation symbol of zero amplitude and/or are arranged in an asymmetric manner. In an example embodiment, the transmitter's electronic encoder can be configured to apply two different respective shaping codes to the information bits and to the corresponding parity bits. The resulting shaped streams can then be appropriately multiplexed and transmitted over the optical communication channel to realize a significant shaping gain. Advantageously, the constellation template(s), two distribution matchers, and FEC code can be flexibly selected and/or adapted to achieve nearly optimal system operation under substantially arbitrary (e.g., arbitrarily bad) channel conditions.
    Type: Application
    Filed: March 7, 2019
    Publication date: September 12, 2019
    Applicant: Nokia Solutions and Networks OY
    Inventors: Joon Ho Cho, Peter J. Winzer, Chandrasekhar Sethumadhavan
  • Patent number: 10404400
    Abstract: An optical WDM system configured to use direct detection of communication signals that is compatible with electronic CD compensation on a per-channel basis. In an example embodiment, to enable full (e.g., amplitude and phase) electric-field reconstruction at the receiver, the optical WDM system uses a carrier-frequency plan according to which the carrier-frequency comb used at one end of the WDM link and the carrier-frequency comb used at the other end of the WDM link are offset with respect to one another by one half of the bandwidth of an individual WDM component transmitted therethrough. This frequency offset places each local carrier frequency at a roll-off edge of the corresponding incoming data-modulated signal. As a result, the corresponding combined optical signal beneficially lends itself to direct detection that can be followed by full electric-field reconstruction using a known self-coherent Kramers-Kronig method and then by conventional electronic CD compensation.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: September 3, 2019
    Assignee: NOKIA OF AMERICA CORPORATION
    Inventors: Xi Chen, Chandrasekhar Sethumadhavan, Peter J. Winzer
  • Publication number: 20180294913
    Abstract: An optical WDM system configured to use direct detection of communication signals that is compatible with electronic CD compensation on a per-channel basis. In an example embodiment, to enable full (e.g., amplitude and phase) electric-field reconstruction at the receiver, the optical WDM system uses a carrier-frequency plan according to which the carrier-frequency comb used at one end of the WDM link and the carrier-frequency comb used at the other end of the WDM link are offset with respect to one another by one half of the bandwidth of an individual WDM component transmitted therethrough. This frequency offset places each local carrier frequency at a roll-off edge of the corresponding incoming data-modulated signal. As a result, the corresponding combined optical signal beneficially lends itself to direct detection that can be followed by full electric-field reconstruction using a known self-coherent Kramers-Kronig method and then by conventional electronic CD compensation.
    Type: Application
    Filed: April 28, 2017
    Publication date: October 11, 2018
    Applicant: Alcatel-Lucent USA Inc.
    Inventors: Xi Chen, Chandrasekhar Sethumadhavan, Peter J. Winzer
  • Patent number: 9419722
    Abstract: We disclose an optical transponder, in which one or more all-electronic feedback paths are used to obtain a relatively accurate estimate of the device-specific signal distortions in the transmitter portion thereof. The obtained estimate is used to enable the digital signal processor of the optical transponder to carry out electronic pre-distortion (EPD) that can significantly reduce or cancel these signal distortions without the use of detailed factory-calibration measurements or optics dedicated to feedback purposes. The use of all-electronic feedback paths may enable a beneficial reduction in the cost of the EPD functionality, e.g., by eliminating a significant extra cost associated with the implementation of optically generated feedback.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: August 16, 2016
    Assignee: Alcatel Lucent
    Inventors: Peter J. Winzer, Andrew Adamiecki, Chandrasekhar Sethumadhavan, Gregory Raybon
  • Patent number: 9344779
    Abstract: A space division multiplexed (SDM) transmission system that includes at least two segments of transmission media in which a spatial assignment of the two segments is different is provided. For example, the SDM transmission may include a first segment of transmission media having a first spatial assignment and a second segment of transmission media having a second spatial assignment, wherein the first spatial assignment differs from the second spatial assignment. An example method obtains an optical signal on a first segment of transmission media having a first spatial assignment and forwards the optical signal on a second segment of transmission media with a different spatial assignment. The transmission media may be a multi-core fiber (MCF), a multi-mode fiber (MMF), a few-mode fiber (FMF), or a ribbon cable comprising nominally uncoupled single-mode fiber (SMF).
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: May 17, 2016
    Assignee: Alcatel Lucent
    Inventors: Chandrasekhar Sethumadhavan, Xiang Liu, Peter J. Winzer, Alan H. Gnauck
  • Patent number: 9300400
    Abstract: An example apparatus comprises an optical transmitter which includes a first processor and at least two optical modulators. The first processor is configured to generate a first electronic representation for each of at least two optical signals for carrying payload data modulated according to a one-dimensional (1-D) modulation format, and to induce on respective ones of the first electronic representations an amount of dispersion that depends on a power-weighted accumulated dispersion (ADPW) of a transmission link through which the at least two optical signals are to be transmitted thereby generating complex-valued electronic representations of pre-dispersion-compensated optical signals. Each of the at least two optical modulators modulate a respective analog version corresponding to a respective one of the complex-valued electronic representations onto a polarization of an optical carrier.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: March 29, 2016
    Assignee: Alcatel Lucent
    Inventors: Xiang Liu, Peter J Winzer, Andrew R Chraplyvy, Robert W Tkach, Chandrasekhar Sethumadhavan
  • Publication number: 20160065311
    Abstract: We disclose an optical transponder, in which one or more all-electronic feedback paths are used to obtain a relatively accurate estimate of the device-specific signal distortions in the transmitter portion thereof. The obtained estimate is used to enable the digital signal processor of the optical transponder to carry out electronic pre-distortion (EPD) that can significantly reduce or cancel these signal distortions without the use of detailed factory-calibration measurements or optics dedicated to feedback purposes. The use of all-electronic feedback paths may enable a beneficial reduction in the cost of the EPD functionality, e.g., by eliminating a significant extra cost associated with the implementation of optically generated feedback.
    Type: Application
    Filed: August 27, 2014
    Publication date: March 3, 2016
    Inventors: Peter J. Winzer, Andrew Adamiecki, Chandrasekhar Sethumadhavan, Gregory Raybon
  • Patent number: 9264146
    Abstract: Embodiments of the disclosure include a method and apparatus for detecting and removing cycle slip. A phase-modulated signal having a plurality of phase-modulated symbols is received at an optical receiver, and, for each phase-modulated symbol, a phase-error estimate of a phase error of the phase-modulated symbol is generated. The presence of a cycle slip is then detected based on the phase-error estimates, and, a phase of each of one or more of the received phase-modulated symbols is adjusted to remove the detected cycle slip without adjusting a local oscillator.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: February 16, 2016
    Assignee: Alcatel Lucent
    Inventors: Xiang Liu, Chandrasekhar Sethumadhavan, Timo Pfau, Giancarlo Gavioli
  • Patent number: 9203682
    Abstract: In one embodiment, a coherent optical receiver has a digital signal processor that processes one or more digital I/Q-signal pairs to recover data carried by a modulated optical signal in a manner that mitigates, based on calibration data retrieved from a memory or on appropriate performance measures and feedback mechanisms, the detrimental effects of frequency-dependent imbalances between the I and Q sub-channels of at least one of the I/Q channels of the receiver. In various embodiments, the calibration data can be generated and written into the memory at the fabrication facility or in situ while the receiver is being operated in a calibration mode. Alternatively or in addition, the calibration data can be generated and dynamically adjusted online during normal operation of the receiver.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: December 1, 2015
    Assignee: Alcatel Lucent
    Inventors: Peter J. Winzer, Xiang Liu, Chandrasekhar Sethumadhavan, Alan H. Gnauck
  • Patent number: 9160456
    Abstract: Methods and apparatus for managing the effects of dispersion in an optical transport system in which some of the system's nodes are connected to one another via inhomogeneous fiber-optic links. In one embodiment, an optical transmitter is configured to apply electronic and/or optical dispersion pre-compensation in the amount selected to cause the peak-to-average-power ratio of the optical signal in the lower-dispersion portion of the link to be relatively low (e.g., close to a minimum value). Advantageously, such dispersion pre-compensation tends to significantly reduce, e.g., in terms of the bit-error rate, the directional anisotropy exhibited by optical transmissions through the inhomogeneous fiber-optic links.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: October 13, 2015
    Assignee: Alcatel Lucent
    Inventors: Xiang Liu, Chandrasekhar Sethumadhavan, Peter J. Winzer
  • Publication number: 20150215050
    Abstract: Embodiments of the disclosure include a method and apparatus for detecting and removing cycle slip. A phase-modulated signal having a plurality of phase-modulated symbols is received at an optical receiver, and, for each phase-modulated symbol, a phase-error estimate of a phase error of the phase-modulated symbol is generated. The presence of a cycle slip is then detected based on the phase-error estimates, and, a phase of each of one or more of the received phase-modulated symbols is adjusted to remove the detected cycle slip without adjusting a local oscillator.
    Type: Application
    Filed: January 30, 2014
    Publication date: July 30, 2015
    Applicant: Alcatel Lucent
    Inventors: Xiang Liu, Chandrasekhar Sethumadhavan, Timo Pfau, Giancarlo Gavioli
  • Publication number: 20150086218
    Abstract: Methods and apparatus for managing the effects of dispersion in an optical transport system in which some of the system's nodes are connected to one another via inhomogeneous fiber-optic links. In one embodiment, an optical transmitter is configured to apply electronic and/or optical dispersion pre-compensation in the amount selected to cause the peak-to-average-power ratio of the optical signal in the lower-dispersion portion of the link to be relatively low (e.g., close to a minimum value). Advantageously, such dispersion pre-compensation tends to significantly reduce, e.g., in terms of the bit-error rate, the directional anisotropy exhibited by optical transmissions through the inhomogeneous fiber-optic links.
    Type: Application
    Filed: September 20, 2013
    Publication date: March 26, 2015
    Applicant: Alcatel-Lucent USA Inc.
    Inventors: Xiang Liu, Chandrasekhar Sethumadhavan, Peter J. Winzer
  • Publication number: 20150086193
    Abstract: An optical transmitter configured to mitigate the adverse effects of fiber nonlinearity by altering the transmitted constellation symbols based on specific nonlinear characteristics of a fiber-optic link over which the optical transmitter is configured to transmit and on an a priori estimate of the nonlinear component of the optical-signal distortion in that fiber-optic link. In an example embodiment, each constellation symbol is altered by a respective perturbation amount determined using (i) a calculated or measured nonlinear transfer function corresponding to the fiber-optic link and (ii) a set of neighboring constellation symbols that are expected to contribute to the nonlinear distortion of the optical signal carrying the present constellation symbol due to the fiber nonlinearity. In various embodiments, different appropriate perturbation amounts can be selected to approximately pre-compensate nonlinear distortions caused by various nonlinear optical effects, such as four-wave mixing, etc.
    Type: Application
    Filed: September 20, 2013
    Publication date: March 26, 2015
    Applicant: ALCATEL-LUCENT USA INC.
    Inventors: Xiang Liu, Peter J. Winzer, Chandrasekhar Sethumadhavan
  • Patent number: 8953949
    Abstract: Methods and apparatus for power-efficiently and reliably transmitting high-level quadrature amplitude modulation (QAM) optical signals using binary drive signals. Even though binary signals are used to drive a QAM modulator directly, without digital-to-analog conversion, the methods and apparatus disclosed allow the transmission of pilot symbol sequences having near optimal properties, such as a constant power profile in the time domain; a mean power that is approximately the same as the mean power of the data symbols; and roughly uniform amplitude in the frequency domain for non-zero frequency components of the pilot symbol sequence. The binary drive signals can be processed so that the modulated optical signals are selectively constrained to a subset of points of the QAM constellation to form a QAM constellation with reduced size and a mean power that is approximately the same as the mean power of the original QAM constellation.
    Type: Grant
    Filed: December 30, 2011
    Date of Patent: February 10, 2015
    Assignee: Alcatel Lucent
    Inventors: Xiang Liu, Chandrasekhar Sethumadhavan
  • Patent number: 8923706
    Abstract: An optical transmitter configured to perform digital signal equalization directed at mitigating the detrimental effects of a frequency roll-off in the transmitter's optical I-Q modulator. In various embodiments, a frequency-dependent spectral-correction function used for the digital signal equalization can be constructed to cause the spectrum of the modulated optical signal generated by the transmitter to have a desired degree of flatness in the vicinity of an optical carrier frequency and/or to at least partially mirror the frequency roll-off in the optical I-Q modulator.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: December 30, 2014
    Assignee: Alcatel Lucent
    Inventors: Chandrasekhar Sethumadhavan, Xiang Liu, Peter J. Winzer, Andrew Chraplyvy
  • Patent number: 8842997
    Abstract: Return To Zero (RZ) shaping is performed for a first I/Q modulator whose output corresponds to a first polarization component using a first two digital-to-analog convertors (DACs), each of which is sampled at approximately twice a modulation symbol rate or more and has an output with a first interleaving order that interleaves one of a first pair of intended drive signal patterns and zeros. RZ shaping is also performed for a second I/Q modulator whose output corresponds to a second polarization component using a second two DACs, each sampled at approximately twice the modulation symbol rate or more and having a second interleaving order that interleaves zeros and one of a second pair of intended drive signal patterns, the second interleaving order opposite the first interleaving order. The first polarization and the second polarization may be combined, thereby forming an Interleaved Return To Zero (IRZ) Polarization Division Multiplexed (PDM) signal.
    Type: Grant
    Filed: January 6, 2011
    Date of Patent: September 23, 2014
    Assignee: Alcatel Lucent
    Inventors: Xiang Liu, Chandrasekhar Sethumadhavan
  • Patent number: 8660433
    Abstract: In one embodiment, an optical transmission system transmits data using a format according to which a data frame has two or more pilot-symbol blocks, each having a guard interval, and two or more payload-symbol blocks that are concatenated without a guard interval between them. The use of guard intervals in the pilot-symbol blocks helps the synchronization and channel-estimation procedures performed at a receiver of the optical transmission system to be robust in the presence of certain transmission impairments. The absence of guard intervals in the payload-symbol blocks helps to minimize the transmission overhead and thus achieve relatively high payload-data throughput.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: February 25, 2014
    Assignee: Alcatel Lucent
    Inventors: Xiang Liu, Chandrasekhar Sethumadhavan
  • Publication number: 20140029957
    Abstract: An optical transmitter configured to perform digital signal equalization directed at mitigating the detrimental effects of a frequency roll-off in the transmitter's optical I-Q modulator. In various embodiments, a frequency-dependent spectral-correction function used for the digital signal equalization can be constructed to cause the spectrum of the modulated optical signal generated by the transmitter to have a desired degree of flatness in the vicinity of an optical carrier frequency and/or to at least partially mirror the frequency roll-off in the optical I-Q modulator.
    Type: Application
    Filed: July 24, 2012
    Publication date: January 30, 2014
    Applicant: ALCATEL-LUCENT USA INC.
    Inventors: Chandrasekhar Sethumadhavan, Xiang Liu, Peter J. Winzer, Andrew Chraplyvy
  • Patent number: 8611751
    Abstract: Systems, apparatus and method for modulating digital data onto an optical carrier to produce a modulated optical carrier in which symbol-modulated optical signals of orthogonal polarizations are temporally interleaved and adapted to be processed by electronic time-division demultiplexing to recover the digital data modulated onto the orthogonal polarizations of the optical signals.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: December 17, 2013
    Assignee: Alcatel Lucent
    Inventors: Xiang Liu, Chandrasekhar Sethumadhavan