Patents by Inventor Chang-An Chou

Chang-An Chou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240145596
    Abstract: A device includes a fin extending from a semiconductor substrate; a gate stack over the fin; a first spacer on a sidewall of the gate stack; a source/drain region in the fin adjacent the first spacer; an inter-layer dielectric layer (ILD) extending over the gate stack, the first spacer, and the source/drain region, the ILD having a first portion and a second portion, wherein the second portion of the ILD is closer to the gate stack than the first portion of the ILD; a contact plug extending through the ILD and contacting the source/drain region; a second spacer on a sidewall of the contact plug; and an air gap between the first spacer and the second spacer, wherein the first portion of the ILD extends across the air gap and physically contacts the second spacer, wherein the first portion of the ILD seals the air gap.
    Type: Application
    Filed: January 2, 2024
    Publication date: May 2, 2024
    Inventors: Su-Hao Liu, Kuo-Ju Chen, Kai-Hsuan Lee, I-Hsieh Wong, Cheng-Yu Yang, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo, Syun-Ming Jang, Meng-Han Chou
  • Patent number: 11973027
    Abstract: A semiconductor device and a method of forming the same are provided. The semiconductor device includes a substrate, a gate structure, a dielectric structure and a contact structure. The substrate has source/drain (S/D) regions. The gate structure is on the substrate and between the S/D regions. The dielectric structure covers the gate structure. The contact structure penetrates through the dielectric structure to connect to the S/D region. A lower portion of a sidewall of the contact structure is spaced apart from the dielectric structure by an air gap therebetween, while an upper portion of the sidewall of the contact structure is in contact with the dielectric structure.
    Type: Grant
    Filed: March 23, 2022
    Date of Patent: April 30, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Pei-Yu Chou, Jr-Hung Li, Liang-Yin Chen, Su-Hao Liu, Tze-Liang Lee, Meng-Han Chou, Kuo-Ju Chen, Huicheng Chang, Tsai-Jung Ho, Tzu-Yang Ho
  • Patent number: 11973052
    Abstract: An electronic device includes a bond wire with a first end bonded by a ball bond to a planar side of a first conductive plate, and a second end bonded by a stitch bond to a conductive stud bump at an angle greater than or equal to 60 degrees. A wirebonding method includes bonding the first end of the conductive bond wire to the first conductive plate includes forming a ball bond to join the first end of the conductive bond wire to a planar side of the first conductive plate by a ball bond, and bonding the second end of the conductive bond wire to the conductive stud bump includes forming a stitch bond to join the second end of the conductive bond wire to the conductive stud bump.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: April 30, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Chien-Chang Li, Hung-Yu Chou, Sheng-Wen Huang, Zi-Xian Zhan, Byron Lovell Williams
  • Patent number: 11962015
    Abstract: Provided are an electrolytic copper foil, an electrode and a lithium-ion cell comprising the same. The electrolytic copper foil has a first surface and a second surface opposite the first surface. An absolute difference of the FWHM of the characteristic peaks of (111) planes of the first surface and the second surface analyzed by GIXRD is less than 0.14, the first and the second surfaces each have a nanoindentation hardness of 0.3 GPa to 3.0 GPa, and the yield strength of the electrolytic copper foil is more than 230 MPa. By controlling the absolute difference of the FWHM of the characteristic peaks of (111) plane of these two surfaces, the nanoindentation hardness of these two surfaces and the yield strength, the electrolytic copper foil can have improved tolerance to the repeated charging and discharging and reduced warpage, thereby improving the yield rate and value of the lithium-ion cell.
    Type: Grant
    Filed: September 8, 2022
    Date of Patent: April 16, 2024
    Assignee: CHANG CHUN PETROCHEMICAL CO., LTD.
    Inventors: Ting-Mu Chuang, Sung-Shiuan Lin, Yao-Sheng Lai, Jui-Chang Chou
  • Patent number: 11962014
    Abstract: Electrodeposited copper foils having adequate puncture strength to withstand both pressure application during consolidation with negative electrode active materials during manufacture, as well as expansion/contraction during repeated charge/discharging cycles when used in a rechargeable secondary battery are described. These copper foils find specific utility as current collectors in rechargeable secondary batteries, particularly in lithium secondary battery with high capacity. Methods of making the copper foils, methods of producing negative electrode for use in lithium secondary battery and lithium secondary battery of high capacity are also described.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: April 16, 2024
    Assignee: CHANG CHUN PETROCHEMICAL CO., LTD.
    Inventors: Huei-Fang Huang, Kuei-Sen Cheng, Yao-Sheng Lai, Jui-Chang Chou
  • Publication number: 20240111121
    Abstract: An imaging lens module includes a plastic lens barrel, a first optical element assembly and a second optical element assembly, wherein both of the first optical element assembly and the second optical element assembly are disposed in the plastic lens barrel. The plastic lens barrel includes a first inner annular surface and a second inner annular surface. The first inner annular surface forms a first receiving space. The second inner annular surface forms a second receiving space. The first optical element assembly is disposed in the first receiving space and includes a plurality of optical lens elements and a first retainer. The second optical element assembly is disposed in the second receiving space and includes a first light blocking sheet and a second retainer.
    Type: Application
    Filed: December 13, 2023
    Publication date: April 4, 2024
    Inventors: Chien-Hsun WU, Lin-An CHANG, Ming-Ta CHOU
  • Publication number: 20240111139
    Abstract: An imaging lens assembly module includes a lens barrel, a catadioptric lens assembly, an imaging lens assembly, a first fixing element and a second fixing element. The lens barrel has a first relying surface and a second relying surface, which face towards an object side of the imaging lens assembly module. The catadioptric lens assembly relies on the first relying surface. The imaging lens assembly is disposed on an image side of the catadioptric lens assembly, and relies on the second relying surface. The first fixing element is for fixing the catadioptric lens assembly to the lens barrel. The second fixing element is for fixing the imaging lens assembly to the lens barrel. The catadioptric lens assembly is for processing at least twice internal reflections of an image light in the imaging lens assembly module, and for providing optical refractive power.
    Type: Application
    Filed: September 26, 2023
    Publication date: April 4, 2024
    Inventors: Lin-An CHANG, Chung Hao CHEN, Wen-Yu TSAI, Ming-Ta CHOU
  • Publication number: 20240103345
    Abstract: An image capturing unit includes an imaging element and a dual-shot injection-molded optical folding element that are adjacent to each other. The imaging element is configured for an imaging light to pass through. The dual-shot injection-molded optical folding element includes a first part and a second part. The first part is made of transparent material. The first part has a reflective surface configured to reflect the imaging light. The second part is made of opaque material, and the second part is fixed at periphery of the first part. The second part includes a supporting portion configured to support the dual-shot injection-molded optical folding element. The supporting portion maintains the dual-shot injection-molded optical folding element at a predetermined position corresponding to the imaging element through mechanism assembly.
    Type: Application
    Filed: December 5, 2023
    Publication date: March 28, 2024
    Applicant: LARGAN PRECISION CO., LTD.
    Inventors: Lin An CHANG, Pei-Chi CHANG, Ming-Ta CHOU
  • Patent number: 11935981
    Abstract: A photo-detecting device includes a first semiconductor layer with a first dopant, a light-absorbing layer, a second semiconductor layer, and a semiconductor contact layer. The second semiconductor layer is located on the first semiconductor layer and has a first region and a second region, the light absorbing layer is located between the first semiconductor layer and the second semiconductor layer and has a third region and a fourth region, the semiconductor contact layer contacts the first region. The first region includes a second dopant and a third dopant, the second region includes second dopant, and the third region includes third dopant. The semiconductor contact layer has a first thickness greater than 50 ? and smaller than 1000 ?.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: March 19, 2024
    Assignee: EPISTAR CORPORATION
    Inventors: Chu-Jih Su, Chia-Hsiang Chou, Wei-Chih Peng, Wen-Luh Liao, Chao-Shun Huang, Hsuan-Le Lin, Shih-Chang Lee, Mei Chun Liu, Chen Ou
  • Publication number: 20240085676
    Abstract: A light-folding element includes an object-side surface, an image-side surface, a reflection surface and a connection surface. The reflection surface is configured to reflect imaging light passing through the object-side surface to the image-side surface. The connection surface is connected to the object-side, image-side and reflection surfaces. The light-folding element has a recessed structure located at the connection surface. The recessed structure is recessed from the connection surface an includes a top end portion, a bottom end portion and a tapered portion located between the top end and bottom end portions. The top end portion is located at an edge of the connection surface. The tapered portion has two tapered edges located on the connection surface. The tapered edges are connected to the top end and bottom end portions. A width of the tapered portion decreases in a direction from the top end portion towards the bottom end portion.
    Type: Application
    Filed: November 22, 2023
    Publication date: March 14, 2024
    Applicant: LARGAN PRECISION CO., LTD.
    Inventors: Min-Chun LIAO, Lin An CHANG, Ming-Ta CHOU, Jyun-Jia CHENG, Cheng-Feng LIN, Ming-Shun CHANG
  • Publication number: 20240079485
    Abstract: A high electron mobility transistor device including a channel layer, a first barrier layer, and a P-type gallium nitride layer is provided. The first barrier layer is disposed on the channel layer. The P-type gallium nitride layer is disposed on the first barrier layer. The first thickness of the first barrier layer located directly under the P-type gallium nitride layer is greater than the second thickness of the first barrier layer located on two sides of the P-type gallium nitride layer.
    Type: Application
    Filed: October 27, 2022
    Publication date: March 7, 2024
    Applicant: Powerchip Semiconductor Manufacturing Corporation
    Inventors: Jih-Wen Chou, Chih-Hung Lu, Bo-An Tsai, Zheng-Chang Mu, Po-Hsien Yeh, Robin Christine Hwang
  • Publication number: 20240071833
    Abstract: The present disclosure relates to a semiconductor device with a hybrid fin-dielectric region. The semiconductor device includes a substrate, a source region and a drain region laterally separated by a hybrid fin-dielectric (HFD) region. A gate electrode is disposed above the HFD region and the HFD region includes a plurality of fins covered by a dielectric and separated from the source region and the drain region by the dielectric.
    Type: Application
    Filed: August 25, 2022
    Publication date: February 29, 2024
    Inventors: Yi-Huan Chen, Huan-Chih Yuan, Yu-Chang Jong, Scott Yeh, Fei-Yun Chen, Yi-Hao Chen, Ting-Wei Chou
  • Publication number: 20240069416
    Abstract: A light path folding element includes a first surface, a second surface, a first reflecting surface and a second reflecting surface. A light travels from the first surface into the light path folding element. The second surface is disposed relative to the first surface along a first direction and is parallel to the first surface, and the first direction is perpendicular to the first surface. The first reflecting surface connects the first surface and the second surface, an acute angle is formed between the first reflecting surface and the first surface, and the light forms an internal reflection via the first reflecting surface. The light forms another internal reflection via the second reflecting surface. The light path folding element further includes a light blocking structure, which extends from at least one of the first surface and the second surface into the light path folding element.
    Type: Application
    Filed: August 24, 2023
    Publication date: February 29, 2024
    Inventors: Ssu-Hsin LIU, Wei-Che TUNG, Lin-An CHANG, Ming-Ta CHOU
  • Publication number: 20240069305
    Abstract: An imaging lens assembly module includes an imaging lens element set, a lens carrier and a light blocking structure. The imaging lens element set has an optical axis. At least one lens element of the lens elements is disposed in the lens carrier. The light blocking structure includes a light blocking opening. The optical axis passes through the light blocking opening, and the light blocking opening includes at least two arc portions and a shrinking portion. Each of the arc portions has a first curvature radius for defining a maximum diameter of the light blocking opening. The shrinking portion is connected to the arc portions for forming the light blocking opening into a non-circular shape. The shrinking portion includes at least one protruding arc which extends and shrinks gradually from the shrinking portion to the optical axis, and the protruding arc has a second curvature radius.
    Type: Application
    Filed: November 8, 2023
    Publication date: February 29, 2024
    Inventors: Lin-An CHANG, Ming-Ta CHOU, Shu-Yun YANG, Cheng-Feng LIN
  • Patent number: 11914217
    Abstract: An imaging lens assembly has an optical axis, and includes a plastic carrier element and an imaging lens element set. The plastic carrier element includes an object-side surface, an image-side surface, an outer surface and an inner surface. The object-side surface includes an object-side opening. The image-side surface includes an image-side opening. The inner surface is connected to the object-side opening and the image-side opening. The imaging lens element set is disposed in the plastic carrier element, and includes at least three lens elements, each of at least two adjacent lens elements of the lens elements includes a first axial assembling structure, the first axial assembling structures are corresponding to and connected to each other. A solid medium interval is maintained between the adjacent lens elements and the inner surface. The solid medium interval is directly contacted with the adjacent lens elements and the inner surface.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: February 27, 2024
    Assignee: LARGAN PRECISION CO., LTD.
    Inventors: Jyun-Jia Cheng, Lin-An Chang, Ming-Ta Chou, Cheng-Feng Lin
  • Publication number: 20240018149
    Abstract: This disclosure relates to bivalent compounds (e.g., bi-functional small molecule compounds), compositions comprising one or more of the bivalent compounds, and to methods of use the bivalent compounds for the degrading target proteins associated with a disease or condition.
    Type: Application
    Filed: June 29, 2023
    Publication date: January 18, 2024
    Inventors: Chu-Chiang LIN, Hung-Chuan CHEN, Pei-Chin Xizhou, Chih-Chang CHOU
  • Publication number: 20240000396
    Abstract: Sleep physiological system and sleep alarm method are disclosed. The method includes acquiring sleep respiratory information and sleep position related information of a user in a sleep duration; comparing the sleep respiratory information with a predetermined condition for deciding a sleep respiratory event; and comparing the sleep position related information with a predetermined position range; providing an alarm behavior according to a corresponding set of alarming conditions based on a comparison result between the sleep position related information and the predetermined position range so as to influence a sleep position and/or a sleep respiratory state of the user.
    Type: Application
    Filed: September 12, 2023
    Publication date: January 4, 2024
    Inventor: Chang-An Chou
  • Publication number: 20230420688
    Abstract: Provided are an electrolytic copper foil, an electrode and a lithium-ion cell comprising the same. The electrolytic copper foil has a first surface and a second surface opposite the first surface. An absolute difference of the FWHM of the characteristic peaks of (111) planes of the first surface and the second surface analyzed by GIXRD is less than 0.14, the first and the second surfaces each have a nanoindentation hardness of 0.3 GPa to 3.0 GPa, and the yield strength of the electrolytic copper foil is more than 230 MPa. By controlling the absolute difference of the FWHM of the characteristic peaks of (111) plane of these two surfaces, the nanoindentation hardness of these two surfaces and the yield strength, the electrolytic copper foil can have improved tolerance to the repeated charging and discharging and reduced warpage, thereby improving the yield rate and value of the lithium-ion cell.
    Type: Application
    Filed: September 8, 2022
    Publication date: December 28, 2023
    Inventors: Ting-Mu CHUANG, SUNG-SHIUAN LIN, Yao-Sheng LAI, Jui-Chang CHOU
  • Publication number: 20230420640
    Abstract: Provided are an electrolytic copper foil, an electrode and a lithium-ion cell comprising the same. The electrolytic copper foil has a first surface and a second surface, which are analyzed by grazing incidence X-ray diffraction (GIXRD), and each have an intensity of a characteristic peak of (111) plane denoted by I1, an intensity of a characteristic peak of (200) plane denoted by I2, an intensity of a characteristic peak of (220) plane denoted by I3, an FWHM of the characteristic peak of (111) plane denoted by W1, and an FWHM of the characteristic peak of (200) plane denoted by W2. The first and second surfaces each have a ratio of (I1+I2)/(I1+I2+I3) of 0.83 or more and a value of (W1+W2) of 0.80 or less. By controlling the features, it can improve the corrosion resistance of the electrolytic copper foil and further increase the safety of the lithium-ion cell.
    Type: Application
    Filed: October 4, 2022
    Publication date: December 28, 2023
    Inventors: Chih-Chung WU, Yao-Sheng LAI, Jui-Chang CHOU
  • Publication number: 20230203415
    Abstract: A cell and tissue sheet forming package includes a container body, a membrane, a sliding door plate and a sealing film. The sliding door plate is disposed slidably on a top of the container body to cover or expose the membrane. The sliding door plate has a hole and a passive magnetic assembly. The cell injection equipment includes a carrier, an injection mechanism and a drive mechanism. The carrier carries the package, and the drive mechanism moves the carrier and the injection mechanism to have the injection mechanism to inject a solution, through the hole, into the package. A heating element of the carrier is introduced to heat the membrane and the solution to transform the solution into a colloid sheet on the membrane. Then, the positive magnetic assembly engages magnetically the passive magnetic assembly to slide the sliding door plate to expose the colloid sheet on the membrane.
    Type: Application
    Filed: December 23, 2021
    Publication date: June 29, 2023
    Inventors: HSIN-YI HSU, YANG-CHENG LIN, CHAO-HONG HSU, YU-BING LIOU, LI-HSIN LIN, HSIN-HSIN SHEN, YU-CHI WANG, CHANG-CHOU LI, CHIH-HUNG HUANG