Patents by Inventor Changhe Shang

Changhe Shang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11430470
    Abstract: Aspects of the present disclosure generally relate to magnetic recording heads of magnetic recording devices. A magnetic read head includes a first pinning layer magnetically oriented in a first direction, and a second pinning layer formed above the first pinning layer and magnetically oriented in a second direction that is opposite of the first direction. The magnetic read head includes a rear hard bias disposed outwardly of one or more of the first pinning layer relative or the second pinning layer. The rear hard bias is magnetically oriented to generate a magnetic field in a bias direction. The bias direction points in the same direction as the first direction or the second direction. The magnetic read head does not include an antiferromagnetic (AFM) layer between a lower shield and an upper shield.
    Type: Grant
    Filed: September 2, 2021
    Date of Patent: August 30, 2022
    Assignee: Western Digital Technologies, Inc.
    Inventors: Xiaoyong Liu, Ji Li, Changhe Shang, Daniele Mauri, Yukimasa Okada
  • Publication number: 20220005501
    Abstract: Aspects of the present disclosure generally relate to magnetic recording heads of magnetic recording devices. A magnetic read head includes a first pinning layer magnetically oriented in a first direction, and a second pinning layer formed above the first pinning layer and magnetically oriented in a second direction that is opposite of the first direction. The magnetic read head includes a rear hard bias disposed outwardly of one or more of the first pinning layer relative or the second pinning layer. The rear hard bias is magnetically oriented to generate a magnetic field in a bias direction. The bias direction points in the same direction as the first direction or the second direction. The magnetic read head does not include an antiferromagnetic (AFM) layer between a lower shield and an upper shield.
    Type: Application
    Filed: September 2, 2021
    Publication date: January 6, 2022
    Applicant: Western Digital Technologies, Inc.
    Inventors: Xiaoyong LIU, Ji LI, Changhe SHANG, Daniele MAURI, Yukimasa OKADA
  • Patent number: 11127422
    Abstract: Aspects of the present disclosure generally relate to magnetic recording heads of magnetic recording devices. A magnetic read head includes a first pinning layer magnetically oriented in a first direction, and a second pinning layer formed above the first pinning layer and magnetically oriented in a second direction that is opposite of the first direction. The magnetic read head includes a rear hard bias disposed outwardly of one or more of the first pinning layer relative or the second pinning layer. The rear hard bias is magnetically oriented to generate a magnetic field in a bias direction. The bias direction points in the same direction as the first direction or the second direction. The magnetic read head does not include an antiferromagnetic (AFM) layer between a lower shield and an upper shield.
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: September 21, 2021
    Assignee: WESTERN DIGITAL TECHNOLOGIES, INC.
    Inventors: Xiaoyong Liu, Ji Li, Changhe Shang, Daniele Mauri, Yukimasa Okada
  • Patent number: 9153260
    Abstract: A slider includes a transducer including a magnetic structure having a front edge and a back edge. The slider further includes an electronic lapping guide (ELG) substantially coplanar with the magnetic structure and having a top edge and a bottom edge. The slider further includes a plurality of pads configured to calibrate a sheet resistance of the ELG and an offset of the ELG.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: October 6, 2015
    Assignee: Western Digital (Fremont), LLC
    Inventors: Steven C. Rudy, Matthew R. Gibbons, Curtis V. Macchioni, Yun-Fei Li, Changhe Shang, Carlos Corona
  • Patent number: 8970988
    Abstract: A method and system provide a magnetic transducer having an air-bearing surface (ABS) and at least two read sensors. The magnetic transducer also includes a first read shield, a first read sensor, a middle shield, a second read sensor, a second read shield, a first electric gap and a second electric gap. The first read sensor is in a down track direction from the first read shield. The middle shield is in a down track direction from the first read sensor. The middle shield is between the first read sensor and the second read sensor. A first portion of the first electric gap is in a direction opposite to the down track direction from the first read sensor. The first read sensor and the second read sensor are between the first electric gap and the second electric gap in a cross-track direction.
    Type: Grant
    Filed: April 15, 2014
    Date of Patent: March 3, 2015
    Assignee: Western Digital (Fremont), LLC
    Inventors: Shaoping Li, Gerardo A. Bertero, Changhe Shang, Ge Yi, Steven C. Rudy, Guolun Hao, Qunwen Leng, Shihai He, Yingbo Zhang, Ming Mao, Lien-Chang Wang
  • Patent number: 8860407
    Abstract: A method and system for testing a read transducer are described. The read transducer includes a read sensor fabricated on a wafer. A system includes a test structure that resides on the wafer. The test structure includes a test device and a heater. The test device corresponds to the read sensor. The heater is in proximity to the test device and is configured to heat the test device substantially without heating the read sensor. Thus, the test structure allows for on-wafer testing of the test device at a plurality of temperatures above an ambient temperature.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: October 14, 2014
    Assignee: Western Digital (Fremont), LLC
    Inventors: Changhe Shang, Daniele Mauri, Kuok San Ho
  • Patent number: 8611054
    Abstract: A magnetic read transducer is described with a magnetoresistive sensor that has a free layer, and an antiferromagnetically-coupled (AFC) soft bias layer for magnetically biasing the free layer. The free layer has a first edge in a track width direction along an air-bearing surface (ABS). At least a portion of the AFC soft bias layer is conformal to at least a portion of a second edge of the free layer, and situated to form a magnetic moment at an angle with respect to a center line of the free layer. The center line of the free layer extends in the same direction as the free layer first edge that is in the track width direction along the ABS.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: December 17, 2013
    Assignee: Western Digital (Fremont), LLC
    Inventors: Changhe Shang, Daniele Mauri, Kuok San Ho, Anup G. Roy, Ming Mao
  • Publication number: 20130257421
    Abstract: A method and system for testing a read transducer are described. The read transducer includes a read sensor fabricated on a wafer. A system includes a test structure that resides on the wafer. The test structure includes a test device and a heater. The test device corresponds to the read sensor. The heater is in proximity to the test device and is configured to heat the test device substantially without heating the read sensor. Thus, the test structure allows for on-wafer testing of the test device at a plurality of temperatures above an ambient temperature.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 3, 2013
    Applicant: WESTERN DIGITAL (FREMONT), LLC
    Inventors: CHANGHE SHANG, DANIELE MAURI, KUOK SAN HO
  • Patent number: 8151441
    Abstract: A method for providing an electronic lapping guide (ELG) for a structure in a magnetic transducer are described. The structure has a front edge and a back edge. The ELG includes a stripe having a top edge and a bottom edge. The method includes calibrating a sheet resistance of the stripe and calibrating an offset of the top edge of the stripe from the back edge of the structure. The method further includes terminating the lapping based at least on the sheet resistance and offset of the ELG.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: April 10, 2012
    Assignee: Western Digital (Fremont), LLC
    Inventors: Steven C. Rudy, Matthew R. Gibbons, Curtis V. Macchioni, Yun-Fei Li, Changhe Shang, Carlos Corona
  • Patent number: 8008912
    Abstract: A method of testing P2 stiffness of a magnetoresistance (MR) sensor stack including a P2 pinned layer is provided. The method comprises the step of applying an external magnetic field to the MR sensor stack. The external magnetic field is oriented substantially perpendicular to a magnetic field of the P2 pinned layer. The method further comprises varying an amplitude of the external magnetic field, measuring a change in a resistance of the MR sensor stack in response to the varying amplitude of the external magnetic field, and calculating the P2 stiffness based on the measured change in resistance.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: August 30, 2011
    Assignee: Western Digital (Fremont), LLC
    Inventor: Changhe Shang
  • Patent number: 7389577
    Abstract: A method to fabricate a tunneling magnetoresistive (TMR) read transducer is disclosed. An insulative layer is deposited on a wafer substrate, and a bottom lead is deposited over the insulative layer. A laminated TMR layer, having a plurality of laminates, is deposited over the bottom lead. A TMR sensor having a stripe height is defined in the TMR layer, and a parallel resistor and first and second shunt resistors are also defined in the TMR layer. A top lead is deposited over the TMR sensor. The parallel resistor is electrically connected to the bottom lead and to the top lead. The first shunt resistor is electrically connected to the bottom lead and the wafer substrate, and the second shunt resistor is electrically connected to the top lead and the wafer substrate.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: June 24, 2008
    Assignee: Western Digital (Fremont), LLC
    Inventors: Changhe Shang, Yun-Fei Li, Yining Hu, Yong Shen
  • Patent number: 6596101
    Abstract: Preferred embodiments of the invention provide new nanostructured materials and methods for preparing nanostructured materials having increased tensile strength and ductility, increased hardness, and very fine grain sizes making such materials useful for a variety of applications such as rotors, electric generators, magnetic bearings, aerospace and many other structural and nonstructural applications. The preferred nanostructured materials have a tensile yield strength from at least about 1.9 to about 2.3 GPa and a tensile ductility from at least 1%. Preferred embodiments of the invention also provide a method of making a nanostructured material comprising melting a metallic material, solidifying the material, deforming the material, forming a plurality of dislocation cell structures, annealing the deformed material at a temperature from about 0.30 to about 0.70 of its absolute melting temperature, and cooling the material.
    Type: Grant
    Filed: October 3, 2001
    Date of Patent: July 22, 2003
    Assignee: Johns Hopkins University
    Inventors: Timothy P. Weihs, Robert Cammarata, Chia-Ling Chien, Changhe Shang
  • Publication number: 20020069944
    Abstract: Preferred embodiments of the invention provide new nanostructured materials and methods for preparing nanostructured materials having increased tensile strength and ductility, increased hardness, and very fine grain sizes making such materials useful for a variety of applications such as rotors, electric generators, magnetic bearings, aerospace and many other structural and nonstructural applications. The preferred nanostructured materials have a tensile yield strength from at least about 1.9 to about 2.3 GPa and a tensile ductility from at least 1%. Preferred embodiments of the invention also provide a method of making a nanostructured material comprising melting a metallic material, solidifying the material, deforming the material, forming a plurality of dislocation cell structures, annealing the deformed material at a temperature from about 0.30 to about 0.70 of its absolute melting temperature, and cooling the material.
    Type: Application
    Filed: October 3, 2001
    Publication date: June 13, 2002
    Inventors: Timothy P. Weihs, Robert Cammarata, Chia-Ling Chien, Changhe Shang