Patents by Inventor Changjiu Dang

Changjiu Dang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11650089
    Abstract: An apparatus for measuring a parameter of a fluid flow passing within a pipe is provided. The apparatus includes a sensing device and a processing unit. The sensing device has a sensor array that includes at least one first macro fiber composite (MFC) strain sensor disposed at a first axial position, and at least one second MFC strain sensor disposed at a second axial position. The first axial position and the second axial position are spaced apart from one another. The at least one first MFC strain sensor and the at least one second MFC strain sensor are both configured to produce signals representative of pressure variations of the fluid flow passing within the pipe. The processing unit is configured to receive the signals from the sensor array and measure one or more fluid flow parameters based on the signals.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: May 16, 2023
    Assignee: Expro Meters, Inc.
    Inventors: Carl J. Gandarillas, Mark E. Sasso, Changjiu Dang, Daniel L. Gysling
  • Publication number: 20210010841
    Abstract: An apparatus for measuring a parameter of a fluid flow passing within a pipe is provided. The apparatus includes a sensing device and a processing unit. The sensing device has a sensor array that includes at least one first macro fiber composite (MFC) strain sensor disposed at a first axial position, and at least one second MFC strain sensor disposed at a second axial position. The first axial position and the second axial position are spaced apart from one another. The at least one first MFC strain sensor and the at least one second MFC strain sensor are both configured to produce signals representative of pressure variations of the fluid flow passing within the pipe. The processing unit is configured to receive the signals from the sensor array and measure one or more fluid flow parameters based on the signals.
    Type: Application
    Filed: July 10, 2020
    Publication date: January 14, 2021
    Inventors: Carl J. Gandarillas, Mark E. Sasso, Changjiu Dang, Daniel L. Gysling
  • Patent number: 8402841
    Abstract: A method and apparatus for sensing a fluid flow within a pipe is provided. The method includes the steps of: a) providing an ultrasonic sensor having a transmitter operable to transmit ultrasonic signals through the first pipe wall, the fluid flow disposed within the pipe, and the second pipe wall, and a receiver operable to receive the transmitted signal after the signal has passed through the pipe walls and fluid flow; b) disposing the transmitter adjacent the first wall and the receiver adjacent the second wall; c) disposing at least one acoustic member between at least one of the transmitter and the first wall, and the receiver and the second wall, which acoustic member has acoustic properties such that the combined respective member and pipe wall have half wave resonant frequencies that substantially match the half wave resonant frequencies of the opposite wall, or opposite wall and respective member; and d) sensing the fluid flow through the pipe walls and structure using the ultrasonic sensor.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: March 26, 2013
    Assignee: Expro Meters, Inc.
    Inventors: Daniel L. Gysling, Patrick Curry, ChangJiu Dang
  • Patent number: 8402840
    Abstract: A device for sensing fluid flow within a pipe, which pipe has a pipe wall, is provided. The device includes a sensor housing and a fluid flow meter. The sensor housing includes at least one pressure vessel enclosure and hardware for mounting the enclosure on an exterior surface of the pipe wall. The enclosure includes a base, side walls, and a cap. The enclosure base has a pipe-side surface that mates with the exterior surface of the pipe wall. The enclosure base and the pipe wall have substantially similar resonant frequencies and acoustic impedance. The sensor housing is adapted to be attached to the pipe wall such that the pipe-side surface of the base is mated with the exterior surface of the pipe wall. The fluid flow meter includes a plurality of ultrasonic sensors disposed within the at least one pressure vessel enclosure. Each sensor has a transmitter and a receiver.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: March 26, 2013
    Assignee: Expro Meters, Inc.
    Inventors: Daniel L. Gysling, ChangJiu Dang
  • Publication number: 20110226063
    Abstract: A method and apparatus for sensing a fluid flow within a pipe is provided. The method includes the steps of: a) providing an ultrasonic sensor having a transmitter operable to transmit ultrasonic signals through the first pipe wall, the fluid flow disposed within the pipe, and the second pipe wall, and a receiver operable to receive the transmitted signal after the signal has passed through the pipe walls and fluid flow; b) disposing the transmitter adjacent the first wall and the receiver adjacent the second wall; c) disposing at least one acoustic member between at least one of the transmitter and the first wall, and the receiver and the second wall, which acoustic member has acoustic properties such that the combined respective member and pipe wall have half wave resonant frequencies that substantially match the half wave resonant frequencies of the opposite wall, or opposite wall and respective member; and d) sensing the fluid flow through the pipe walls and structure using the ultrasonic sensor.
    Type: Application
    Filed: March 11, 2011
    Publication date: September 22, 2011
    Applicant: EXPRO METERS, INC.
    Inventors: Daniel L. Gysling, Patrick Curry, ChangJiu Dang
  • Publication number: 20100307263
    Abstract: A device for sensing fluid flow within a pipe, which pipe has a pipe wall, is provided. The device includes a sensor housing and a fluid flow meter. The sensor housing includes at least one pressure vessel enclosure and hardware for mounting the enclosure on an exterior surface of the pipe wall. The enclosure includes a base, side walls, and a cap. The enclosure base has a pipe-side surface that mates with the exterior surface of the pipe wall. The enclosure base and the pipe wall have substantially similar resonant frequencies and acoustic impedance. The sensor housing is adapted to be attached to the pipe wall such that the pipe-side surface of the base is mated with the exterior surface of the pipe wall. The fluid flow meter includes a plurality of ultrasonic sensors disposed within the at least one pressure vessel enclosure. Each sensor has a transmitter and a receiver.
    Type: Application
    Filed: June 9, 2010
    Publication date: December 9, 2010
    Applicant: EXPRO METERS, INC.
    Inventors: Daniel L. Gysling, ChangJiu Dang
  • Patent number: 7673526
    Abstract: A method for sensing flow within a pipe having an internal passage disposed between a first wall portion and a second wall portion is provided, comprising the steps of: 1) providing a flow meter having at least one ultrasonic sensor unit that includes an ultrasonic transmitter attached to the first wall portion and an ultrasonic receiver attached to the second wall portion and aligned to receive ultrasonic signals transmitted from the transmitter; 2) selectively operating the ultrasonic transmitter to transmit a beam of ultrasonic signal, which beam has a focal point such that within the pipe, the beam is either colliminated, divergent or convergent; and 3) receiving the ultrasonic signals within the beam using the ultrasonic receiver. An apparatus operable to perform the aforesaid method is also provided.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: March 9, 2010
    Assignee: Expro Meters, Inc.
    Inventors: Timothy J. Bailey, Mark Fernald, Changjiu Dang, Christian O'Keefe
  • Patent number: 7624651
    Abstract: An apparatus is presented for damping an undesired component of an ultrasonic signal. The apparatus includes a sensor affixed to a pipe. The sensor includes a transmitter and a receiver. The transmitted ultrasonic signal includes a structural component propagating through the pipe and a fluid component propagating through a flow in the pipe. The receiver receives one of the transmitted components. The apparatus includes a damping structure. The damping structure dampens the structural component of the ultrasonic signal to impede propagation of the structural component to the receiver. The damping structure includes one of a housing secured to the pipe to modify ultrasonic vibrational characteristics thereof, a plurality of film assemblies including a tunable circuit to attenuate structural vibration of the pipe, and a plurality of blocks affixed to the pipe to either reflect or propagates through the blocks, the undesired structural component of the ultrasonic signal.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: December 1, 2009
    Assignee: Expro Meters, Inc.
    Inventors: Mark Fernald, Daniel L. Gysling, Timothy J. Bailey, Changjiu Dang
  • Patent number: 7624650
    Abstract: A method and apparatus for damping an ultrasonic signal propagating in the wall of a pipe, the apparatus including at least one damping structure for securing at least one sensor to the wall of the pipe, wherein the at least one sensor includes a transmitter component and a receiver component for transmitting and receiving an ultrasonic signal, wherein the at least one damping structure is associated with the outer wall of the pipe for damping the ultrasonic signal propagating within the wall of the pipe and a processor that defines a convective ridge in the k-? plane in response to the ultrasonic signals, and determines the slope of at least a portion of the convective ridge to determine the flow velocity of the fluid.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: December 1, 2009
    Assignee: Expro Meters, Inc.
    Inventors: Daniel L. Gysling, Mark Fernald, Timothy J. Bailey, Changjiu Dang
  • Publication number: 20090025487
    Abstract: A method and apparatus for damping an ultrasonic signal propagating in the wall of a pipe, the apparatus including at least one damping structure for securing at least one sensor to the wall of the pipe, wherein the at least one sensor includes a transmitter component and a receiver component for transmitting and receiving an ultrasonic signal, wherein the at least one damping structure is associated with the outer wall of the pipe for damping the ultrasonic signal propagating within the wall of the pipe and a processor that defines a convective ridge in the k-? plane in response to the ultrasonic signals, and determines the slope of at least a portion of the convective ridge to determine the flow velocity of the fluid.
    Type: Application
    Filed: July 27, 2007
    Publication date: January 29, 2009
    Inventors: Daniel L. Gysling, Mark Fernald, Timothy J. Bailey, Changjiu Dang
  • Publication number: 20080098818
    Abstract: An apparatus is presented for damping an undesired component of an ultrasonic signal. The apparatus includes a sensor affixed to a pipe. The sensor includes a transmitter and a receiver. The transmitted ultrasonic signal includes a structural component propagating through the pipe and a fluid component propagating through a flow in the pipe. The receiver receives one of the transmitted components. The apparatus includes a damping structure. The damping structure dampens the structural component of the ultrasonic signal to impede propagation of the structural component to the receiver. The damping structure includes one of a housing secured to the pipe to modify ultrasonic vibrational characteristics thereof, a plurality of film assemblies including a tunable circuit to attenuate structural vibration of the pipe, and a plurality of blocks affixed to the pipe to either reflect or propagates through the blocks, the undesired structural component of the ultrasonic signal.
    Type: Application
    Filed: October 29, 2007
    Publication date: May 1, 2008
    Applicant: CiDRA CORPORATION
    Inventors: Mark Fernald, Daniel L. Gysling, Timothy J. Bailey, Changjiu Dang
  • Publication number: 20080098824
    Abstract: A method for sensing flow within a pipe having an internal passage disposed between a first wall portion and a second wall portion is provided, comprising the steps of: 1) providing a flow meter having at least one ultrasonic sensor unit that includes an ultrasonic transmitter attached to the first wall portion and an ultrasonic receiver attached to the second wall portion and aligned to receive ultrasonic signals transmitted from the transmitter; 2) selectively operating the ultrasonic transmitter to transmit a beam of ultrasonic signal, which beam has a focal point such that within the pipe, the beam is either colliminated, divergent or convergent; and 3) receiving the ultrasonic signals within the beam using the ultrasonic receiver. An apparatus operable to perform the aforesaid method is also provided.
    Type: Application
    Filed: October 31, 2007
    Publication date: May 1, 2008
    Applicant: CIDRA CORPORATION
    Inventors: Timothy J. Bailey, Mark Fernald, Changjiu Dang