Patents by Inventor Changmin Chun

Changmin Chun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10655072
    Abstract: The invention relates weldments useful as heat transfer tubes in pyrolysis furnaces. The invention relates to tubes that are useful in pyrolysis furnaces. The weldments include a tubular member and at least one mixing element. The tubular member comprises an aluminum-containing alloy. The mixing element comprises an aluminum-containing alloy. The mixing element's aluminum-containing alloy can be the same as or different from the tubular member's aluminum-containing alloy. Other aspects of the invention relate to pyrolysis furnaces which include such weldments, and the use of such pyrolysis furnaces for hydrocarbon conversion processes such as steam cracking.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: May 19, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: David B. Spicer, Changmin Chun
  • Patent number: 10577292
    Abstract: The invention relates to hydrocarbon conversion, to equipment and materials useful for hydrocarbon conversion, and to processes for carrying out hydrocarbon conversion, e.g., hydrocarbon pyrolysis processes. The hydrocarbon conversion is carried out in a reactor which includes at least one channeled member that comprises refractory and has an open frontal area ?55%. The refractory can include non-oxide ceramic.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: March 3, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Changmin Chun, Dhaval A. Bhandari, Federico Barrai
  • Publication number: 20200030779
    Abstract: Ceramic compositions with catalytic activity are provided, along with methods for using such catalytic ceramic compositions. The ceramic compositions correspond to compositions that can acquire increased catalytic activity by cyclic exposure of the ceramic composition to reducing and oxidizing environments at a sufficiently elevated temperature. The ceramic compositions can be beneficial for use as catalysts in reaction environments involving swings of temperature and/or pressure conditions, such as a reverse flow reaction environment. Based on cyclic exposure to oxidizing and reducing conditions, the surface of the ceramic composition can be converted from a substantially fully oxidized state to various states including at least some dopant metal particles supported on a structural oxide surface.
    Type: Application
    Filed: July 16, 2019
    Publication date: January 30, 2020
    Inventors: Matthew S. Ide, Changmin Chun, Anastasios I. Skoulidas
  • Publication number: 20200030778
    Abstract: Ceramic compositions with catalytic activity are provided, along with methods for using such catalytic ceramic compositions. The ceramic compositions correspond to compositions that can acquire increased catalytic activity by cyclic exposure of the ceramic composition to reducing and oxidizing environments at a sufficiently elevated temperature. The ceramic compositions can be beneficial for use as catalysts in reaction environments involving swings of temperature and/or pressure conditions, such as a reverse flow reaction environment. Based on cyclic exposure to oxidizing and reducing conditions, the surface of the ceramic composition can be converted from a substantially fully oxidized state to various states including at least some dopant metal particles supported on a structural oxide surface.
    Type: Application
    Filed: July 16, 2019
    Publication date: January 30, 2020
    Inventors: Matthew S. Ide, Changmin Chun, Anastasios I. Skoulidas
  • Publication number: 20200024524
    Abstract: The invention relates to hydrocarbon pyrolysis, to equipment and materials useful for hydrocarbon pyrolysis, to processes for carrying out hydrocarbon pyrolysis, and to the use of hydrocarbon pyrolysis for, e.g., hydrocarbon gas upgrading. The pyrolysis is carried out in a reactor which includes at least one thermal mass having an open frontal area ?55%.
    Type: Application
    Filed: August 15, 2017
    Publication date: January 23, 2020
    Inventors: Federico Barrai, Elizabeth G. Mahoney, John S. Coleman, Dhaval A. Bhandari, Brian M. Weiss, Changmin Chun, Frank Hershkowitz
  • Patent number: 10456768
    Abstract: This application relates to a heat transfer tube, its method of manufacture and its use for thermal cracking hydrocarbon feeds, such as thermal cracking in furnaces. The heat transfer tube comprises a chromium and aluminum carburization-resistant alloy capable of generating a typically continuous aluminum oxide scale under thermal cracking conditions that reduces coking and thereby enhances heat transfer. The carburization-resistant alloy comprises 25.1 to 55.0 wt. % nickel; 18.1 to 23.9 wt. % chromium; 4.1 to 7.0 wt. % aluminum; and iron. Additionally, the carburization-resistant alloy has at least one strengthening mechanism to provide desirable mechanical properties. The carburization-resistant alloy composition is also resistant to the formation of cracks during centrifugal casting.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: October 29, 2019
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: ChangMin Chun, Jorge J. Perdomo
  • Publication number: 20190284483
    Abstract: The invention relates weldments useful as heat transfer tubes in pyrolysis furnaces. The invention relates to tubes that are useful in pyrolysis furnaces. The weldments include a tubular member and at least one mixing element. The tubular member comprises an aluminum-containing alloy. The mixing element comprises an aluminum-containing alloy. The mixing element's aluminum-containing alloy can be the same as or different from the tubular member's aluminum-containing alloy. Other aspects of the invention relate to pyrolysis furnaces which include such weldments, and the use of such pyrolysis furnaces for hydrocarbon conversion processes such as steam cracking.
    Type: Application
    Filed: June 3, 2019
    Publication date: September 19, 2019
    Inventors: David B. Spicer, Changmin Chun
  • Patent number: 10351784
    Abstract: The invention relates weldments useful as heat transfer tubes in pyrolysis furnaces. The invention relates to tubes that are useful in pyrolysis furnaces. The weldments include a tubular member and at least one mixing element. The tubular member comprises an aluminum-containing alloy. The mixing element comprises an aluminum-containing alloy. The mixing element's aluminum-containing alloy can be the same as or different from the tubular member's aluminum-containing alloy. Other aspects of the invention relate to pyrolysis furnaces which include such weldments, and the use of such pyrolysis furnaces for hydrocarbon conversion processes such as steam cracking.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: July 16, 2019
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: David B. Spicer, ChangMin Chun
  • Publication number: 20190169088
    Abstract: The invention relates to hydrocarbon conversion, to equipment and materials useful for hydrocarbon conversion, and to processes for carrying out hydrocarbon conversion, e.g., hydrocarbon pyrolysis processes. The hydrocarbon conversion is carried out in a reactor which includes at least one channeled member that comprises refractory and has an open frontal area ?55%. The refractory can include non-oxide ceramic.
    Type: Application
    Filed: August 15, 2017
    Publication date: June 6, 2019
    Inventors: Changmin Chun, Dhaval A. Bhandari, Federico Barrai
  • Publication number: 20190078182
    Abstract: This application relates to a heat transfer tube, its method of manufacture and its use for thermal cracking hydrocarbon feeds, such as thermal cracking in furnaces. The heat transfer tube comprises a chromium and aluminum carburization-resistant alloy capable of generating a typically continuous aluminum oxide scale under thermal cracking conditions that reduces coking and thereby enhances heat transfer. The carburization-resistant alloy comprises 25.1 to 55.0 wt. % nickel; 18.1 to 23.9 wt. % chromium; 4.1 to 7.0 wt. % aluminum; and iron. Additionally, the carburization-resistant alloy has at least one strengthening mechanism to provide desirable mechanical properties. The carburization-resistant alloy composition is also resistant to the formation of cracks during centrifugal casting.
    Type: Application
    Filed: August 20, 2018
    Publication date: March 14, 2019
    Inventors: ChangMin Chun, Jorge J. Perdomo
  • Publication number: 20190055178
    Abstract: This disclosure relates to processes, compositions, and systems useful for the oxydehydrogenation of alkanes to form olefins (e.g., for the conversion of ethane to ethylene). The processes use an oxygen transfer agent and may be carried out in any suitable reactor, including a reverse flow reactor, a circulating fluid bed reactor, or a cyclic co-flow reactor.
    Type: Application
    Filed: August 13, 2018
    Publication date: February 21, 2019
    Inventors: Brian M. Weiss, ChangMin Chun, Dhaval A. Bhandari, Federico Barrai, Sophie Liu
  • Patent number: 10207242
    Abstract: This disclosure relates to weldments useful as heat transfer tubes in refinery processes dealing with gas phase hydrocarbon process streams at high temperatures. This disclosure also relates to tubes that are useful in refinery processes dealing with gas phase hydrocarbon process streams at high temperatures. The weldments include a tubular member and at least one mixing element. The tubular member comprises an aluminum-containing alloy. The mixing element comprises an aluminum-containing alloy. The mixing element's aluminum-containing alloy can be the same as or different from the tubular member's aluminum-containing alloy. Other aspects of the disclosure relate to refinery processes dealing with gas phase hydrocarbon process streams at high temperatures which include such weldments.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: February 19, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Changmin Chun, David B. Spicer
  • Patent number: 10053390
    Abstract: In one aspect, the invention includes a reactor apparatus for pyrolyzing a hydrocarbon feedstock, the apparatus including: a reactor component comprising a refractory material in oxide form, the refractory material having a melting point of at least 2060° C. and which remains in oxide form when exposed to a gas having an oxygen partial pressure of 10?15 bar, a carbon partial pressure above the carbon partial pressure of the zirconium carbide and zirconium oxide phase transition at the same temperature, and at temperatures below the temperature of the zirconium triple point at the oxygen partial pressure of 10?15 bar; and ii) when exposed to a gas having an oxygen partial pressure of 10?15 bar and at temperatures above the zirconium triple point at the oxygen partial pressure of 10?15 bar. In some embodiments, the reactor comprises a regenerative pyrolysis reactor apparatus and in other embodiments it includes a reverse flow regenerative reactor apparatus.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: August 21, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Frank Hershkowitz, ChangMin Chun, Paul F. Keusenkothen, Shiun Ling, Gary D. Mohr
  • Patent number: 9809759
    Abstract: The present disclosure relates to reactor components and their use, e.g., in regenerative reactors. A process and apparatus for utilizing different wetted areas along the flow path of a fluid in a pyrolysis reactor, e.g., a thermally regenerating reactor, such as a regenerative, reverse-flow reactor, is described.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: November 7, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Paul F. Keusenkothen, Frank Hershkowitz, Gary D. Mohr, Changmin Chun, Jeffrey W. Frederick
  • Patent number: 9707536
    Abstract: The present disclosure relates to insulation components and their use, e.g., in regenerative reactors. Specifically, a process and apparatus for managing temperatures from oxidation and pyrolysis reactions in a reactor, e.g., a thermally regeneratating reactor, such as a regenerative, reverse-flow reactor is described in relation to the various reactor components.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: July 18, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: ChangMin Chun, Frank Hershkowitz, Paul F. Keusenkothen, Robert L. Antram
  • Publication number: 20170022426
    Abstract: The present disclosure relates to reactor components and their use, e.g., in regenerative reactors. A process and apparatus for utilizing different wetted areas along the flow path of a fluid in a pyrolysis reactor, e.g., a thermally regenerating reactor, such as a regenerative, reverse-flow reactor, is described.
    Type: Application
    Filed: March 4, 2016
    Publication date: January 26, 2017
    Inventors: Paul F. Keusenkothen, Frank Hershkowitz, Gary D. Mohr, Changmin Chun, Jeffrey W. Frederick
  • Publication number: 20160340257
    Abstract: In one aspect, the invention includes a reactor apparatus for pyrolyzing a hydrocarbon feedstock, the apparatus including: a reactor component comprising a refractory material in oxide form, the refractory material having a melting point of at least 2060° C. and which remains in oxide form when exposed to a gas having an oxygen partial pressure of 10?15 bar, a carbon partial pressure above the carbon partial pressure of the zirconium carbide and zirconium oxide phase transition at the same temperature, and at temperatures below the temperature of the zirconium triple point at the oxygen partial pressure of 10?15 bar; and ii) when exposed to a gas having an oxygen partial pressure of 10?15 bar and at temperatures above the zirconium triple point at the oxygen partial pressure of 10?15 bar. In some embodiments, the reactor comprises a regenerative pyrolysis reactor apparatus and in other embodiments it includes a reverse flow regenerative reactor apparatus.
    Type: Application
    Filed: August 8, 2016
    Publication date: November 24, 2016
    Inventors: Frank Hershkowitz, ChangMin Chun, Paul F. Keusenkothen, Shiun Ling, Gary D. Mohr
  • Patent number: 9441166
    Abstract: In one aspect, the invention includes a reactor apparatus for pyrolyzing a hydrocarbon feedstock, the apparatus including: a reactor component comprising a refractory material in oxide form, the refractory material having a melting point of at least 2060° C. and which remains in oxide form when exposed to a gas having an oxygen partial pressure of 10?15 bar, a carbon partial pressure above the carbon partial pressure of the zirconium carbide and zirconium oxide phase transition at the same temperature, and at temperatures below the temperature of the zirconium triple point at the oxygen partial pressure of 10?15 bar; and ii) when exposed to a gas having an oxygen partial pressure of 10?15 bar and at temperatures above the zirconium triple point at the oxygen partial pressure of 10?15 bar. In some embodiments, the reactor comprises a regenerative pyrolysis reactor apparatus and in other embodiments it includes a reverse flow regenerative reactor apparatus.
    Type: Grant
    Filed: July 25, 2014
    Date of Patent: September 13, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Frank Hershkowitz, ChangMin Chun, Paul F. Keusenkothen, Shiun Ling, Gary D. Mohr
  • Publication number: 20160167009
    Abstract: This disclosure relates to weldments useful as heat transfer tubes in refinery processes dealing with gas phase hydrocarbon process streams at high temperatures. This disclosure also relates to tubes that are useful in refinery processes dealing with gas phase hydrocarbon process streams at high temperatures. The weldments include a tubular member and at least one mixing element. The tubular member comprises an aluminum-containing alloy. The mixing element comprises an aluminum-containing alloy. The mixing element's aluminum-containing alloy can be the same as or different from the tubular member's aluminum-containing alloy. Other aspects of the disclosure relate to refinery processes dealing with gas phase hydrocarbon process streams at high temperatures which include such weldments.
    Type: Application
    Filed: November 16, 2015
    Publication date: June 16, 2016
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Changmin Chun, David B. Spicer
  • Publication number: 20160168480
    Abstract: The invention relates weldments useful as heat transfer tubes in pyrolysis furnaces. The invention relates to tubes that are useful in pyrolysis furnaces. The weldments include a tubular member and at least one mixing element. The tubular member comprises an aluminum-containing alloy. The mixing element comprises an aluminum-containing alloy. The mixing element's aluminum-containing alloy can be the same as or different from the tubular member's aluminum-containing alloy. Other aspects of the invention relate to pyrolysis furnaces which include such weldments, and the use of such pyrolysis furnaces for hydrocarbon conversion processes such as steam cracking.
    Type: Application
    Filed: November 16, 2015
    Publication date: June 16, 2016
    Inventors: David B. Spicer, ChangMin Chun