Patents by Inventor Changqing Wang Adams

Changqing Wang Adams has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11969929
    Abstract: Described herein is a multilayer microporous film or membrane that may exhibit improved properties, including improved dielectric break down and strength, compared to prior monolayer or tri-layer microporous membranes of the same thickness. The preferred multilayer microporous membrane comprises microlayers and one or more lamination interfaces or barriers. Also disclosed is a battery separator or battery comprising one or more of the multilayer microporous films or membranes. The inventive battery and battery separator is preferably safer and more robust than batteries and battery separators using prior monolayer and tri-layer microporous membranes. Also, described herein is a method for making the multilayer microporous separators, membranes or films described herein.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: April 30, 2024
    Assignee: Celgard, LLC
    Inventors: Kang Karen Xiao, Stefan Reinartz, Takahiko Kondo, Hisaki Ikebata, Eric J. Penegar, Robert Nark, Changqing Wang Adams, Masaaki Okada, Brian R. Stepp, Eric Robert White, Allen M. Donn, Katharine Chemelewski
  • Patent number: 11923497
    Abstract: Described herein, are battery separators, comprising the following: a microporous polymeric film; and an optional coating layer on at least one side of the microporous polymeric film, wherein at least one of the microporous polymeric film and the optional coating comprises an additive. The additive is selected from the group consisting of a lubricating agent, a plasticizing agent, a nucleating agent, a shrinkage reducing agent, a surfactant, an SEI improving agent, a cathode protection agent, a flame retardant additive, LiPF6 salt stabilizer, an overcharge protector, an aluminum corrosion inhibitor, a lithium deposition agent or improver, or a solvation enhancer, an aluminum corrosion inhibitor, a wetting agent, and a viscosity improver. Also, described herein are batteries, including lithium-ion batteries, comprising one or more of the described separators. Methods for making the battery separators are also described.
    Type: Grant
    Filed: November 1, 2021
    Date of Patent: March 5, 2024
    Assignee: Celgard, LLC
    Inventors: Changqing Wang Adams, Kang Karen Xiao, Stefan Reinartz, Masaaki Okada, Brian R. Stepp, Yao Lu, Eric Robert White, Katharine Chemelewski
  • Publication number: 20240055726
    Abstract: This application is directed to dry-process porous membranes comprising polyethylene and to methods for forming such membranes. Some of the dry-process porous membranes may comprise polyethylene that has been irradiated with electron-beam irradiation. The dry-process porous membranes disclosed herein may be used in the following: lithium ion batteries, including those utilizing nickel manganese cobalt oxide (NMC), lithium metal, or lithium iron phosphate (LFP) chemistries, and/or large format lithium ion batteries, textiles, garments, PPE, filters, medical products, house products, fragrance devices, and/or disposable lighters.
    Type: Application
    Filed: December 14, 2021
    Publication date: February 15, 2024
    Inventors: Changqing Wang Adams, Zhengming Zhang, Stefan Reinartz
  • Publication number: 20230294387
    Abstract: A multilayer membrane comprising at least two co-extruded layers where the two co-extruded layer contain different polymers and one of the two co-extruded layers contains an extrusion additive. Examples of useful extrusion additives may include a nucleating agent or a pore-forming particulate. A method for making the membrane is also disclosed. Using an extrusion additive when co-extruding two different polymers avoids some of the drawbacks associated with processes involving the co-extrusion of different polymers, particularly processes where a co-extruded non-porous precursor is later stretched to form pores. For example, the drawback of lower permeability, difficulty to make lower Gurley, and splittiness may be improved.
    Type: Application
    Filed: July 5, 2021
    Publication date: September 21, 2023
    Inventors: Changqing Wang ADAMS, David ANZINI
  • Publication number: 20230238587
    Abstract: Novel or improved microporous single or multilayer battery separator membranes, separators, batteries including such membranes or separators, methods of making such membranes, separators, and/or batteries, and/or methods of using such membranes, separators and/or batteries are provided. In accordance with at least certain embodiments, a multilayer dry process polyethylene/polypropylene/polyethylene microporous separator which is manufactured using the inventive process which includes machine direction stretching followed by transverse direction stretching and a subsequent calendaring step as a means to reduce the thickness of the multilayer microporous membrane, to reduce the percent porosity of the multilayer microporous membrane in a controlled manner and/or to improve transverse direction tensile strength.
    Type: Application
    Filed: January 27, 2023
    Publication date: July 27, 2023
    Inventors: Kristoffer K. Stokes, William John Mason, Kang Karen Xiao, Xiaomin Zhang, Barry J. Summey, Robert Moran, Jeffrey Gordon Poley, Brian R. Stepp, Changqing Wang Adams, Daniel R. Alexander, Shante P. Williams, Andrew Edward Voss, Douglas George Robertson
  • Publication number: 20230226789
    Abstract: A microporous membrane wipe and a method of using such microporous membrane wipe are disclosed. The microporous membrane wipe may be uniaxially or biaxially oriented microporous membrane. The uniaxially or biaxially oriented microporous membrane may be made from one or more block and/or impact copolymers of polyethylene and/or polypropylene. A method of using such a microporous membrane wipe for skin oil blotting is also disclosed. Further disclosed is a method of using such a microporous membrane wipe for cleaning a surface for the removal of fingerprints, smudges and the like, where such surfaces may include, for example, eyeglasses, electronics, cell phones, displays, optical devices, camera lenses, microscope lenses and other precision optics, and/or the like.
    Type: Application
    Filed: March 20, 2023
    Publication date: July 20, 2023
    Inventors: Kristoffer K. Stokes, Karl F. Humiston, Changqing Wang Adams, William John Mason
  • Patent number: 11658333
    Abstract: In accordance with at least certain embodiments, the present invention is directed to novel, improved, coated, or treated separator membranes, separators or membrane based separators for lithium batteries. The membranes or separators may include non-woven layers, improved surfactant treatments, or combinations thereof. The separators or membranes are useful for solvent electrolyte lithium batteries, especially rechargeable lithium ion batteries, and provide improved performance, wettability, cycling ability, and/or recharging efficiency.
    Type: Grant
    Filed: July 7, 2020
    Date of Patent: May 23, 2023
    Assignee: Celgard, LLC
    Inventors: Changqing Wang Adams, C. Glen Wensley, Stefan Reinartz
  • Patent number: 11607856
    Abstract: A microporous membrane wipe and a method of using such microporous membrane wipe are disclosed. The microporous membrane wipe may be uniaxially or biaxially oriented microporous membrane. The uniaxially or biaxially oriented microporous membrane may be made from one or more block and/or impact copolymers of polyethylene and/or polypropylene. A method of using such a microporous membrane wipe for skin oil blotting is also disclosed. Further disclosed is a method of using such a microporous membrane wipe for cleaning a surface for the removal of fingerprints, smudges and the like, where such surfaces may include, for example, eyeglasses, electronics, cell phones, displays, optical devices, camera lenses, microscope lenses and other precision optics, and/or the like.
    Type: Grant
    Filed: October 16, 2014
    Date of Patent: March 21, 2023
    Assignee: Celgard, LLC
    Inventors: Kristoffer K. Stokes, Karl F. Humiston, Changqing Wang Adams, William John Mason
  • Patent number: 11569549
    Abstract: Novel or improved microporous single or multilayer battery separator membranes, separators, batteries including such membranes or separators, methods of making such membranes, separators, and/or batteries, and/or methods of using such membranes, separators and/or batteries are provided. In accordance with at least certain embodiments, a multilayer dry process polyethylene/polypropylene/polyethylene microporous separator which is manufactured using the inventive process which includes machine direction stretching followed by transverse direction stretching and a subsequent calendering step as a means to reduce the thickness of the multilayer microporous membrane, to reduce the percent porosity of the multilayer microporous membrane in a controlled manner and/or to improve transverse direction tensile strength.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: January 31, 2023
    Assignee: Celgard, LLC
    Inventors: Kristoffer K. Stokes, William John Mason, Kang Karen Xiao, Xiaomin Zhang, Barry J. Summey, Robert Moran, Jeffrey Gordon Poley, Brian R. Stepp, Changqing Wang Adams, Daniel R. Alexander, Shante P. Williams, Andrew Edward Voss, Douglas George Robertson
  • Publication number: 20220181745
    Abstract: The instant disclosure or invention is preferably directed to a polyamide-imide coated membrane, separator membrane, or separator for a lithium battery such as a high energy or high voltage rechargeable lithium battery and the corresponding battery. The separator preferably includes a porous or microporous polyamide-imide coating or layer on at least one side of a polymeric microporous layer, membrane or film. The polyamide-imide coating or layer may include other polymers, additives, fillers, or the like. The polyamide-imide coating may be adapted, for example, to provide oxidation resistance, to block dendrite growth, to add dimensional and/or mechanical stability, to reduce shrinkage, to add high temperature performance (HTMI function), to prevent electronic shorting at temperatures above 200 deg C., and/or the like.
    Type: Application
    Filed: April 2, 2020
    Publication date: June 9, 2022
    Inventors: Zhengming Zhang, Changqing Wang Adams, Stefan Reinartz
  • Publication number: 20220149481
    Abstract: In accordance with at least selected embodiments, novel or improved separator membranes, separators, batteries including such separators, methods of making such membranes and/or separators, and/or methods of using such membranes and/or separators are disclosed or provided. In accordance with at least certain embodiments, an ionized radiation treated microporous polyolefin, polyethylene (PE), copolymer, and/or polymer blend (e.g., a copolymer or blend comprising PE and another polymer, such as polypropylene (PP)) battery separator for a secondary or rechargeable lithium battery and/or a method of making an ionized radiation treated microporous battery separator is disclosed.
    Type: Application
    Filed: November 22, 2021
    Publication date: May 12, 2022
    Inventors: Changqing Wang Adams, Michael Bielmann, Zhengming Zhang
  • Publication number: 20220115740
    Abstract: Described herein, are battery separators, comprising the following: a microporous polymeric film; and an optional coating layer on at least one side of the microporous polymeric film, wherein at least one of the microporous polymeric film and the optional coating comprises an additive. The additive is selected from the group consisting of a lubricating agent, a plasticizing agent, a nucleating agent, a shrinkage reducing agent, a surfactant, an SEI improving agent, a cathode protection agent, a flame retardant additive, LiPF6 salt stabilizer, an overcharge protector, an aluminum corrosion inhibitor, a lithium deposition agent or improver, or a solvation enhancer, an aluminum corrosion inhibitor, a wetting agent, and a viscosity improver. Also, described herein are batteries, including lithium-ion batteries, comprising one or more of the described separators. Methods for making the battery separators are also described.
    Type: Application
    Filed: November 1, 2021
    Publication date: April 14, 2022
    Inventors: Changqing Wang Adams, Kang Karen Xiao, Stefan Reinartz, Masaaki Okada, Brian R. Stepp, Yao Lu, Eric Robert White, Katharine Chemelewski
  • Publication number: 20220094017
    Abstract: The instant disclosure or invention is preferably directed to a polyimide coated membrane, separator membrane, or separator for a lithium battery such as a high energy or high voltage rechargeable lithium battery and the corresponding battery. The separator preferably includes a porous or microporous polyimide coating or layer on at least one side of a polymeric microporous layer, membrane or film. The polyimide coating or layer may include other polymers, additives, fillers, or the like. The polyimide coating may be adapted, for example, to provide oxidation resistance, to block dendrite growth, to add dimensional and/or mechanical stability, to reduce shrinkage, to add high temperature performance (HTMI function), to prevent electronic shorting at temperatures above 200 deg C., and/or the like.
    Type: Application
    Filed: January 3, 2020
    Publication date: March 24, 2022
    Inventors: Zhengming Zhang, Changqing Wang Adams
  • Patent number: 11196126
    Abstract: In accordance with at least selected embodiments, novel or improved separator membranes, separators, batteries including such separators, methods of making such membranes and/or separators, and/or methods of using such membranes and/or separators are disclosed or provided. In accordance with at least certain embodiments, an ionized radiation treated microporous polyolefin, polyethylene (PE), copolymer, and/or polymer blend (e.g., a copolymer or blend comprising PE and another polymer, such as polypropylene (PP)) battery separator for a secondary or rechargeable lithium battery and/or a method of making an ionized radiation treated microporous battery separator is disclosed.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: December 7, 2021
    Assignee: Celgard, LLC
    Inventors: Changqing Wang Adams, Michael Bielmann, Zhengming Zhang
  • Publication number: 20210367308
    Abstract: In accordance with at least selected embodiments, novel or improved porous membranes or substrates, separator membranes, separators, composites, electrochemical devices, batteries, methods of making such membranes or substrates, separators, and/or batteries, and/or methods of using such membranes or substrates, separators and/or batteries are disclosed. In accordance with at least certain embodiments, novel or improved microporous membranes, battery separator membranes, separators, energy storage devices, batteries including such separators, methods of making such membranes, separators, and/or batteries, and/or methods of using such membranes, separators and/or batteries are disclosed. In accordance with at least certain selected embodiments, a separator for a battery which has an oxidation protective and binder-free deposition layer which is stable up to 5.2 volts or more, for example, up to 7 volts, in a battery is disclosed.
    Type: Application
    Filed: July 27, 2021
    Publication date: November 25, 2021
    Inventors: Lie Shi, C. Glen Wensley, Zhengming Zhang, Katharine Chemelewski, Junqing Ma, Ronnie E. Smith, Kwantai Cho, Weifeng Fang, Changqing Wang Adams, Ian McCallum, Jun Nada, Shante P. Williams, Jacob S. Mangum
  • Patent number: 11165121
    Abstract: Described herein, are battery separators, comprising the following: a microporous polymeric film; and an optional coating layer on at least one side of the microporous polymeric film, wherein at least one of the microporous polymeric film and the optional coating comprises an additive. The additive is selected from the group consisting of a lubricating agent, a plasticizing agent, a nucleating agent, a shrinkage reducing agent, a surfactant, an SEI improving agent, a cathode protection agent, a flame retardant additive, LiPF6 salt stabilizer, an overcharge protector, an aluminum corrosion inhibitor, a lithium deposition agent or improver, or a solvation enhancer, an aluminum corrosion inhibitor, a wetting agent, and a viscosity improver. Also, described herein are batteries, including lithium-ion batteries, comprising one or more of the described separators. Methods for making the battery separators are also described.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: November 2, 2021
    Assignee: Celgard, LLC
    Inventors: Changqing Wang Adams, Kang Karen Xiao, Stefan Reinartz, Masaaki Okada, Brian R. Stepp, Yao Lu, Eric Robert White, Katharine Chemelewski
  • Publication number: 20210257701
    Abstract: A new or improved microporous monolayer, bilayer, trilayer, or multilayer membrane, separator membrane, separator, or coated separator is disclosed. The membrane is preferably made up of at least one resin or polymer and at least one additive. The additive may comprise at least one material that improves adhesion of the microporous membrane to a coating, including a polyaramid-containing coating and a PCS coating, or to a different material such as a metallic surface, including an electrode surface. Improvements in adhesion are based on comparisons to similar microporous membranes without the at least one additive. In some preferred embodiments, the at least one additive may comprise, consist of, or consist essentially of a functionalized polymer or the combination of a functionalized polymer and an elastomer. In some embodiments, the functional group of the functionalized polymer may be maleic anhydride (MAH).
    Type: Application
    Filed: May 10, 2019
    Publication date: August 19, 2021
    Inventors: Kang Karen Xiao, Allen M. Donn, Stefan Reinartz, Changqing Wang Adams, Masaaki Okada, Brian R. Stepp, Eric Robert White, Katharine Chemelewski
  • Patent number: 11094995
    Abstract: In accordance with at least selected embodiments, novel or improved porous membranes or substrates, separator membranes, separators, composites, electrochemical devices, batteries, methods of making such membranes or substrates, separators, and/or batteries, and/or methods of using such membranes or substrates, separators and/or batteries are disclosed. In accordance with at least certain embodiments, novel or improved microporous membranes, battery separator membranes, separators, energy storage devices, batteries including such separators, methods of making such membranes, separators, and/or batteries, and/or methods of using such membranes, separators and/or batteries are disclosed. In accordance with at least certain selected embodiments, a separator for a battery which has an oxidation protective and binder-free deposition layer which is stable up to 5.2 volts or more, for example, up to 7 volts, in a battery is disclosed.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: August 17, 2021
    Assignee: Celgard, LLC
    Inventors: Lie Shi, C. Glen Wensley, Zhengming Zhang, Katharine Chemelewski, Junqing Ma, Ronnie E. Smith, Kwantai Cho, Weifeng Fang, Changqing Wang Adams, Ian McCallum, Jun Nada, Shante P. Williams, Jacob S. Mangum
  • Publication number: 20210194095
    Abstract: Described herein is a multilayer microporous film or membrane that may exhibit improved properties, including improved dielectric break down and strength, compared to prior monolayer or tri-layer microporous membranes of the same thickness. The preferred multilayer microporous membrane comprises microlayers and one or more lamination interfaces or barriers. Also disclosed is a battery separator or battery comprising one or more of the multilayer microporous films or membranes. The inventive battery and battery separator is preferably safer and more robust than batteries and battery separators using prior monolayer and tri-layer microporous membranes. Also, described herein is a method for making the multilayer microporous separators, membranes or films described herein.
    Type: Application
    Filed: May 10, 2019
    Publication date: June 24, 2021
    Inventors: Karen Kang Xiao, Stefan Reinartz, Takahiko Kondo, Hisaki lkebata, Eric J. Penegar, Robert Nark, Changqing Wang Adams, Masaaki Okada, Brian R. Stepp, Eric Robert White, Allen M. Donn, Katharine Chemeiewski
  • Publication number: 20210036293
    Abstract: Novel or improved microporous single or multilayer battery separator membranes, separators, batteries including such membranes or separators, methods of making such membranes, separators, and/or batteries, and/or methods of using such membranes, separators and/or batteries are provided. In accordance with at least certain embodiments, a multilayer dry process polyethylene/polypropylene/polyethylene microporous separator which is manufactured using the inventive process which includes machine direction stretching followed by transverse direction stretching and a subsequent calendering step as a means to reduce the thickness of the multilayer microporous membrane, to reduce the percent porosity of the multilayer microporous membrane in a controlled manner and/or to improve transverse direction tensile strength.
    Type: Application
    Filed: September 14, 2020
    Publication date: February 4, 2021
    Inventors: Kristoffer K. Stokes, William John Mason, Kang Karen Xiao, Xiaomin Zhang, Barry J. Summey, Robert Moran, Jeffrey Gordon Poley, Brian R. Stepp, Changqing Wang Adams, Daniel R. Alexander, Shante P. Williams, Andrew Edward Voss, Douglas George Robertson