Patents by Inventor Changxian Zhong

Changxian Zhong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11846956
    Abstract: A linear voltage regulator includes a transistor, an error amplifier, a feedback circuit and a compensation circuit. The transistor has a first terminal for receiving an input voltage, a second terminal for providing an output voltage, and a control terminal. The error amplifier has a first input terminal, a second input terminal and an output terminal, wherein the first input terminal receives a reference voltage, and the output terminal is coupled to the control terminal of the transistor. The feedback circuit receives the output voltage and generates a feedback voltage lower than the output voltage. The compensation circuit is configured to receive the feedback voltage and generate a compensation voltage at the second input terminal of the error amplifier. The compensation circuit includes a compensation capacitor for introducing a zero point into an open-loop transfer function of the linear voltage regulator to improve system stability.
    Type: Grant
    Filed: December 10, 2021
    Date of Patent: December 19, 2023
    Assignee: Chengdu Monolithic Power Systems Co., Ltd.
    Inventor: Changxian Zhong
  • Publication number: 20230216415
    Abstract: A preprocessing circuit for a comparator has a high voltage selection circuit, a first constant voltage circuit, a second constant voltage circuit, a first transistor, and a second transistor. The high voltage selection circuit receives a first voltage and a second voltage, and provides a selected voltage. The first constant voltage circuit provides a first clamping voltage based on the selected voltage, and the second constant voltage circuit provides a second clamping voltage based on the selected voltage. The first transistor receives the first voltage and the first clamping voltage, and provides a first comparison voltage to a first comparison terminal of the comparator. The second transistor receives the second voltage and the second clamping voltage, and provides a second comparison voltage to a second comparison terminal of the comparator.
    Type: Application
    Filed: February 24, 2023
    Publication date: July 6, 2023
    Inventor: Changxian Zhong
  • Patent number: 11609271
    Abstract: A clock self-testing method and circuit. The clock self-testing method includes introducing a first clock signal and a second clock signal, counting cycles of the first clock signal and the second clock signal respectively beginning at the same moment, and if one of the number of cycles of the first clock signal being counted and the number of cycles of the second clock signal being counted is equal to N, determining whether the remained number of cycles is in a count range from M to N. If the remained number of cycles is out of the count range from M to N, the first clock signal and the second clock signal have errors.
    Type: Grant
    Filed: October 21, 2021
    Date of Patent: March 21, 2023
    Assignee: Chengdu Monolithic Power Systems Co., Ltd.
    Inventor: Changxian Zhong
  • Publication number: 20220206519
    Abstract: A linear voltage regulator includes a transistor, an error amplifier, a feedback circuit and a compensation circuit. The transistor has a first terminal for receiving an input voltage, a second terminal for providing an output voltage, and a control terminal. The error amplifier has a first input terminal, a second input terminal and an output terminal, wherein the first input terminal receives a reference voltage, and the output terminal is coupled to the control terminal of the transistor. The feedback circuit receives the output voltage and generates a feedback voltage lower than the output voltage. The compensation circuit is configured to receive the feedback voltage and generate a compensation voltage at the second input terminal of the error amplifier. The compensation circuit includes a compensation capacitor for introducing a zero point into an open-loop transfer function of the linear voltage regulator to improve system stability.
    Type: Application
    Filed: December 10, 2021
    Publication date: June 30, 2022
    Inventor: Changxian Zhong
  • Patent number: 11343886
    Abstract: A light-emitting element driving device and controller and dimming method for the light-emitting element driving device. The light-emitting driving device has a dimming resistor and a power converter. A first current is provided to the dimming resistor, and a voltage across the dimming resistor is compared with a first threshold voltage. Then a second current is provided according to the comparison result. A dimming signal is generated based the voltage across the dimming resistor and a current flowing through the dimming resistor, to control the power converter to drive a plurality of light-emitting elements. A plurality of voltage windows may be configured for the dimming signal. a 2-step dimming function may be activated for high precision.
    Type: Grant
    Filed: August 21, 2020
    Date of Patent: May 24, 2022
    Assignee: Chengdu Monolithic Power Systems Co., Ltd.
    Inventors: Huafei Ding, Changxian Zhong
  • Publication number: 20220146576
    Abstract: A clock self-testing method and circuit. The clock self-testing method includes introducing a first clock signal and a second clock signal, counting cycles of the first clock signal and the second clock signal respectively beginning at the same moment, and if one of the number of cycles of the first clock signal being counted and the number of cycles of the second clock signal being counted is equal to N, determining whether the remained number of cycles is in a count range from M to N. If the remained number of cycles is out of the count range from M to N, the first clock signal and the second clock signal have errors.
    Type: Application
    Filed: October 21, 2021
    Publication date: May 12, 2022
    Inventor: Changxian Zhong
  • Publication number: 20210068220
    Abstract: A light-emitting element driving device and controller and dimming method for the light-emitting element driving device. The light-emitting driving device has a dimming resistor and a power converter. A first current is provided to the dimming resistor, and a voltage across the dimming resistor is compared with a first threshold voltage. Then a second current is provided according to the comparison result. A dimming signal is generated based the voltage across the dimming resistor and a current flowing through the dimming resistor, to control the power converter to drive a plurality of light-emitting elements. A plurality of voltage windows may be configured for the dimming signal. a 2-step dimming function may be activated for high precision.
    Type: Application
    Filed: August 21, 2020
    Publication date: March 4, 2021
    Inventors: Huafei Ding, Changxian Zhong
  • Patent number: 10020734
    Abstract: An auto calibration method used in switching converters with constant on-time control. The auto calibration method includes: generating a periodical clock signal with a predetermined duty cycle; providing a first voltage and a second voltage to an on-time control circuit to generate an on-time control signal based on the first and second voltage; providing the clock signal and on-time control signal to a logic circuit to generate a switch control signal based on the clock signal and on-time control signal; comparing the duty cycle of the switch control signal with the duty cycle of the clock signal to adjust a calibration code signal; and adjusting circuit parameters of the on-time control circuit in accordance with the calibration code signal.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: July 10, 2018
    Assignee: Chengdu Monolithic Power Systems Co., Ltd.
    Inventor: Changxian Zhong
  • Publication number: 20180006564
    Abstract: An auto calibration method used in switching converters with constant on-time control. The auto calibration method includes: generating a periodical clock signal with a predetermined duty cycle; providing a first voltage and a second voltage to an on-time control circuit to generate an on-time control signal based on the first and second voltage; providing the clock signal and on-time control signal to a logic circuit to generate a switch control signal based on the clock signal and on-time control signal; comparing the duty cycle of the switch control signal with the duty cycle of the clock signal to adjust a calibration code signal; and adjusting circuit parameters of the on-time control circuit in accordance with the calibration code signal.
    Type: Application
    Filed: June 26, 2017
    Publication date: January 4, 2018
    Inventor: Changxian Zhong