Patents by Inventor Changyub Paek

Changyub Paek has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11873453
    Abstract: Provided herein are methods and systems of making a high quality isoparaffinic base stock which include contacting an adsorbent material with a hydrocarbon feedstock and a solvent and separating at least some of the one or more high VI components from the hydrocarbon feedstock to produce a first fraction base stock having a first fraction base stock viscosity index. The adsorbent material is desorbed with a second solvent to produce a second fraction base stock having a second fraction base stock viscosity index. In these methods, the first fraction base stock viscosity index is less than the hydrocarbon feedstock viscosity index and the second fraction base stock viscosity index is greater than the hydrocarbon feedstock viscosity index.
    Type: Grant
    Filed: May 19, 2022
    Date of Patent: January 16, 2024
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Randall D. Partridge, Changyub Paek, Yogesh V. Joshi, Carmen C. Lasso, Scott J. Weigel
  • Publication number: 20230357650
    Abstract: A process for separating one or more one-ring cycloparaffins and one or more multi-ring cycloparaffins from a hydrocarbon mixture is disclosed. The process comprises the steps of providing the hydrocarbon mixture; and contacting the hydrocarbon mixture with an adsorbent material comprising a metal organic framework to separate the one or more one-ring cycloparaffins and the one or more multi-ring cycloparaffins from the hydrocarbon mixture. The process is conducted in a liquid phase.
    Type: Application
    Filed: July 22, 2020
    Publication date: November 9, 2023
    Inventors: Changyub Paek, Joseph M. Falkowski, Randall D. Partridge, Yogesh V. Joshi, Carmen C. Lasso
  • Publication number: 20230287278
    Abstract: This disclosure provides methods for separating multi-ring naphthenes from a hydrocarbon feedstock. The hydrocarbon feedstock includes at least normal paraffins, isoparaffins, 1-ring naphthenes attached with a paraffinic alkyl chain, and multi-ring naphthenes. The methods comprise passing the hydrocarbon feedstock and a solvent, at a temperature and pressure through a bed of an adsorbent comprising a metal-organic framework (MOF) adsorbent, to adsorb the multi-ring naphthenes from the hydrocarbon feedstock, thereby producing a base stock product that is depleted in multi-ring naphthenes. The metal-organic framework adsorbent is a porous crystalline material comprised of metal functionalities connected by organic linkers to form a repeating 2-D or 3-D lattice. The base stock product has a viscosity index (VI) greater than the viscosity index of the hydrocarbon feedstock.
    Type: Application
    Filed: May 19, 2022
    Publication date: September 14, 2023
    Inventors: Changyub Paek, Joseph M. Falkowski, Yogesh V. Joshi, Carmen C. Lasso
  • Patent number: 11634371
    Abstract: A method for separating classes of hydrocarbon compounds from a feed stream including a hydrocarbon mixture is disclosed. The method includes the steps of passing a feed stream through a plurality of separation units arranged in a series in any order, wherein each separation unit has an adsorbent material; and separating classes of hydrocarbon compounds from the feed stream. When one of the plurality of separation units comprises an adsorbent material that is a metal organic framework selected from a zirconium, hafnium, cerium, or titanium-based metal organic framework, then another plurality of separation units includes an adsorption material that is different from the metal organic framework. The method is conducted in a liquid phase. The method can also use a single separation unit with a continuous cyclic bed apparatus. The method can be combined with refining and downstream processes.
    Type: Grant
    Filed: December 6, 2021
    Date of Patent: April 25, 2023
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Changyub Paek, Randall D. Partridge, Yogesh V. Joshi, Jayashree Kalyanaraman, Joseph M. Falkowski
  • Publication number: 20220389331
    Abstract: Provided herein are methods and systems of making a high quality isoparaffinic base stock which include contacting an adsorbent material with a hydrocarbon feedstock and a solvent and separating at least some of the one or more high VI components from the hydrocarbon feedstock to produce a first fraction base stock having a first fraction base stock viscosity index. The adsorbent material is desorbed with a second solvent to produce a second fraction base stock having a second fraction base stock viscosity index. In these methods, the first fraction base stock viscosity index is less than the hydrocarbon feedstock viscosity index and the second fraction base stock viscosity index is greater than the hydrocarbon feedstock viscosity index.
    Type: Application
    Filed: May 19, 2022
    Publication date: December 8, 2022
    Inventors: Randall D. Partridge, Changyub Paek, Yogesh V. Joshi, Carmen C. Lasso, Scott J. Weigel
  • Publication number: 20220177393
    Abstract: A method for separating classes of hydrocarbon compounds from a feed stream including a hydrocarbon mixture is disclosed. The method includes the steps of passing a feed stream through a plurality of separation units arranged in a series in any order, wherein each separation unit has an adsorbent material; and separating classes of hydrocarbon compounds from the feed stream. When one of the plurality of separation units comprises an adsorbent material that is a metal organic framework selected from a zirconium, hafnium, cerium, or titanium-based metal organic framework, then another plurality of separation units includes an adsorption material that is different from the metal organic framework. The method is conducted in a liquid phase. The method can also use a single separation unit with a continuous cyclic bed apparatus. The method can be combined with refining and downstream processes.
    Type: Application
    Filed: December 6, 2021
    Publication date: June 9, 2022
    Inventors: Changyub Paek, Randall D. Partridge, Yogesh V. Joshi, Jayashree Kalyanaraman, Joseph M. Falkowski
  • Publication number: 20210269889
    Abstract: The present disclosure relates to methods and systems for converting biomass comprising lignocellulosic material into biofuels and biochemicals that contribute to reduction of greenhouse gas emissions. In particular, the present disclosure relates to methods and systems for the removal or reduction of impurities during lignocellulosic biomass processing to enhance biorefinery production of biofuels and biochemicals.
    Type: Application
    Filed: January 6, 2021
    Publication date: September 2, 2021
    Inventors: Changyub Paek, Arsam Behkish, Giovanni Pilloni
  • Patent number: 10995352
    Abstract: The present disclosure relates to glycolipid compositions, methods for making glycolipid compositions, and their uses thereof. Glycolipid compositions can be prepared via yeast-mediated catalyzed reaction, and exhibit excellent surfactant properties having high corrosion inhibition performance, good reducing surface tension efficiency. Processes of the present disclosure can provide glycolipid compositions having one or more of: a ratio of lactonic glycolipids to glycolipid acylic esters is from about 1:10 to about 10:1, a molecular weight of from about 400 g/mol to about 10,000 g/mol, a corrosion rate of carbon steel from about 0.5 MPY to about 100 MPY at room temperature and at pH 4-6. Furthermore, aqueous solutions of the glycolipid compositions of the present disclosure can have a surface tension of from about 20 mN/m to about 80 mN/m.
    Type: Grant
    Filed: May 9, 2020
    Date of Patent: May 4, 2021
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Partha Nandi, Xiaozhou Zhang, Mohor Chatterjee, Vera Grankina, Changyub Paek, Fang Cao
  • Publication number: 20210017549
    Abstract: The present disclosure relates to processes for producing hydrocarbon fuels from lignocellulosic biomass. A process may include introducing biomass to a pretreatment system forming a pretreatment effluent and introducing the pretreatment effluent to a hydrolysis system forming a hydrolysate. The hydrolysate may be introduced to a lignin separation system to form a sugar-rich stream and a lignin-rich stream. The sugar-rich stream may be introduced to a purification system comprising at least one toxin converting microorganism or subcellular material to form a purified sugar-rich stream, and the purified sugar-rich stream and one or more sugar converting microorganisms are introduced to a bioreactor configured to produce hydrocarbon fuels. Additionally, the present disclosure also related to systems for production of hydrocarbon fuels including, a pretreatment system, a hydrolysis system, a lignin separation system, a purification system, and at least one bioreactor.
    Type: Application
    Filed: May 9, 2020
    Publication date: January 21, 2021
    Inventors: Arsam Behkish, Giovanni Pilloni, Changyub Paek
  • Publication number: 20200377916
    Abstract: The present disclosure relates to glycolipid compositions, methods for making glycolipid compositions, and their uses thereof. Glycolipid compositions can be prepared via yeast-mediated catalyzed reaction, and exhibit excellent surfactant properties having high corrosion inhibition performance, good reducing surface tension efficiency. Processes of the present disclosure can provide glycolipid compositions having one or more of: a ratio of lactonic glycolipids to glycolipid acylic esters is from about 1:10 to about 10:1, a molecular weight of from about 400 g/mol to about 10,000 g/mol, a corrosion rate of carbon steel from about 0.5 MPY to about 100 MPY at room temperature and at pH 4-6. Furthermore, aqueous solutions of the glycolipid compositions of the present disclosure can have a surface tension of from about 20 mN/m to about 80 mN/m.
    Type: Application
    Filed: May 9, 2020
    Publication date: December 3, 2020
    Inventors: Partha Nandi, Xiaozhou Zhang, Mohor Chatterjee, Vera Grankina, Changyub Paek, Fang Cao
  • Publication number: 20200181664
    Abstract: The present disclosure relates to methods and systems for converting biomass into biofuels and biochemicals. In particular, the present disclosure relates to methods and systems for converting biomass comprising lignocellulosic material into biofuels and biochemicals, such as those comprising fatty acid esters, that contribute to reduction of greenhouse gas emissions.
    Type: Application
    Filed: December 9, 2019
    Publication date: June 11, 2020
    Inventors: Arsam Behkish, C. Rebecca Locker, Giovanni Pilloni, Kelsey M. McNeely, Changyub Paek, Ashish B. Mhadeshwar, Eric B. Shen
  • Patent number: 10676412
    Abstract: In a process for separating dimethyl biphenyl isomers a mixture comprising one or more 3,3?, 3,4?- or 4,4?-dimethyl biphenyl isomers, one or more 2,X?-dimethyl biphenyl isomers (where X=2, 3, or 4) and one or more further hydrocarbon components is contacted with a first adsorbent, thereby selectively adsorbing one or more of the dimethyl biphenyl isomers within the first adsorbent. A first raffinate stream containing less selectively adsorbed components is withdrawn from the first adsorbent and a first extract stream containing selectively adsorbed dimethyl biphenyl isomers is withdraw. The selectively adsorbed dimethyl biphenyl isomers comprise one or more of 3,3?-, 3,4?- or 4,4?-dimethyl biphenyl isomers and one or more of 2,X?-dimethyl biphenyl isomers (where X?=2, 3, or 4).
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: June 9, 2020
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Michael P. Lanci, Changyub Paek, Catherine M. Dorsi
  • Patent number: 10676413
    Abstract: In a process for producing one or more 2,X?-dimethyl biphenyl isomers (where X=2, 3 or 4), a feed comprising toluene is contacted with hydrogen in the presence of a hydroalkylation catalyst under conditions effective to produce a hydroalkylation reaction product comprising (methylcyclohexyl)toluene. At least part of the hydroalkylation reaction product is dehydrogenated in the presence of a dehydrogenation catalyst under conditions effective to produce a dehydrogenation reaction product comprising dimethyl biphenyl isomers. The dehydrogenation reaction product is then separated into at least a first stream comprising one or more 3,3?-, 3,4?- and 4,4?-dimethyl biphenyl isomers and at least one second stream comprising one or more 2,X?-dimethyl biphenyl isomers (where X=2, 3 or 4).
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: June 9, 2020
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Michael P. Lanci, Changyub Paek, Catherine M. Dorsi
  • Patent number: 10550050
    Abstract: In a process for separating one or more 3,3?-, 3,4?- and 4,4?-dimethyl biphenyl isomers, a feed comprising the isomers is contacted with a zeolite adsorbent which contains one or more metal cations in the +1 or +2 oxidation states. Separation processes for each of the 3,3?-, 3,4?- and 4,4?-dimethyl biphenyl isomers is provided.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: February 4, 2020
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Changyub Paek, Michael P. Lanci, Randall D. Partridge, Allen W. Burton, Carla S. Pereira, Benjamin A. McCool
  • Publication number: 20190300456
    Abstract: In a process for separating dimethyl biphenyl isomers a mixture comprising one or more 3,3?, 3,4?- or 4,4?-dimethyl biphenyl isomers, one or more 2,X?-dimethyl biphenyl isomers (where X=2, 3, or 4) and one or more further hydrocarbon components is contacted with a first adsorbent, thereby selectively adsorbing one or more of the dimethyl biphenyl isomers within the first adsorbent. A first raffinate stream containing less selectively adsorbed components is withdrawn from the first adsorbent and a first extract stream containing selectively adsorbed dimethyl biphenyl isomers is withdraw. The selectively adsorbed dimethyl biphenyl isomers comprise one or more of 3,3?-, 3,4?- or 4,4?-dimethyl biphenyl isomers and one or more of 2,X?-dimethyl biphenyl isomers (where X?=2, 3, or 4).
    Type: Application
    Filed: March 27, 2019
    Publication date: October 3, 2019
    Inventors: Michael P. Lanci, Changyub Paek, Catherine M. Dorsi
  • Publication number: 20190300457
    Abstract: In a process for producing one or more 2,X?-dimethyl biphenyl isomers (where X=2, 3 or 4), a feed comprising toluene is contacted with hydrogen in the presence of a hydroalkylation catalyst under conditions effective to produce a hydroalkylation reaction product comprising (methylcyclohexyl)toluene. At least part of the hydroalkylation reaction product is dehydrogenated in the presence of a dehydrogenation catalyst under conditions effective to produce a dehydrogenation reaction product comprising dimethyl biphenyl isomers. The dehydrogenation reaction product is then separated into at least a first stream comprising one or more 3,3?-, 3,4?- and 4,4?-dimethyl biphenyl isomers and at least one second stream comprising one or more 2,X?-dimethyl biphenyl isomers (where X=2, 3 or 4).
    Type: Application
    Filed: March 27, 2019
    Publication date: October 3, 2019
    Inventors: Michael P. Lanci, Changyub Paek, Catherine M. Dorsi
  • Patent number: 10138176
    Abstract: In a process for producing one or more 3,3?-, 3,4?- and 4,4?-dimethyl biphenyl isomers, a feed comprising toluene is contacted with hydrogen in the presence of a hydroalkylation catalyst under conditions effective to produce a hydroalkylation reaction product comprising (methylcyclohexyl)toluenes. At least part of the hydroalkylation reaction product is dehydrogenated in the presence of a dehydrogenation catalyst under conditions effective to produce a dehydrogenation reaction product comprising a mixture of dimethyl biphenyl isomers. The dehydrogenation reaction product is then separated into at least a first stream containing one or more 3,3?-, 3,4?- and 4,4?-dimethyl biphenyl isomers and at least one second stream comprising one or more 2,X?-dimethyl biphenyl isomers (where X is 2, 3, or 4). The 3,3?-, 3,4?- and 4,4?-dimethyl biphenyl isomers are then separated utilizing selective adsorption.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: November 27, 2018
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Michael P. Lanci, Changyub Paek, Catherine M. Dorsi
  • Patent number: 10093597
    Abstract: In a process for separating one or more 3,3?-, 3,4?- and 4,4?-dimethyl biphenyl isomers, a feed comprising the isomers is contacted with an adsorbent containing a zeolite having a largest diffuse along dimension of at least 4 Angstroms. The adsorbents provide selective adsorption of 4,4?-dimethyl biphenyl.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: October 9, 2018
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Changyub Paek, Michael P. Lanci, Randall D. Partridge, Allen W. Burton, Peter I. Ravikovitch, Sumathy Raman
  • Publication number: 20180222817
    Abstract: In a process for producing one or more 3,3?-, 3,4?- and 4,4?-dimethyl biphenyl isomers, a feed comprising toluene is contacted with hydrogen in the presence of a hydroalkylation catalyst under conditions effective to produce a hydroalkylation reaction product comprising (methylcyclohexyl)toluenes. At least part of the hydroalkylation reaction product is dehydrogenated in the presence of a dehydrogenation catalyst under conditions effective to produce a dehydrogenation reaction product comprising a mixture of dimethyl biphenyl isomers. The dehydrogenation reaction product is then separated into at least a first stream containing one or more 3,3?-, 3,4?- and 4,4?-dimethyl biphenyl isomers and at least one second stream comprising one or more 2,X?-dimethyl biphenyl isomers (where X is 2, 3, or 4). The 3,3?-, 3,4?- and 4,4?-dimethyl biphenyl isomers are then separated utilizing selective adsorption.
    Type: Application
    Filed: February 1, 2018
    Publication date: August 9, 2018
    Inventors: Michael P. LANCI, Changyub PAEK, Catherine M. DORSI
  • Publication number: 20180215685
    Abstract: In a process for separating one or more 3,3?-, 3,4?- and 4,4?-dimethyl biphenyl isomers, a feed comprising the isomers is contacted with a zeolite adsorbent which contains one or more metal cations in the +1 or +2 oxidation states. Separation processes for each of the 3,3?-, 3,4?- and 4,4?-dimethyl biphenyl isomers is provided.
    Type: Application
    Filed: February 1, 2018
    Publication date: August 2, 2018
    Inventors: Changyub PAEK, Michael P. LANCI, Randall D. PARTRIDGE, Allen W. BURTON, Carla S. PEREIRA, Benjamin A. McCOOL