Patents by Inventor Chao-Hsing Lin

Chao-Hsing Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240136472
    Abstract: A semiconductor light-emitting device includes a semiconductor stack including a first semiconductor layer and a second semiconductor layer; a first reflective layer formed on the first semiconductor layer and including a plurality of vias; a plurality of contact structures respectively filled in the vias and electrically connected to the first semiconductor layer; a second reflective layer including metal material formed on the first reflective layer and contacting the contact structures; a plurality of conductive vias surrounded by the semiconductor stack; a connecting layer formed in the conductive vias and electrically connected to the second semiconductor layer; a first pad portion electrically connected to the second semiconductor layer; and a second pad portion electrically connected to the first semiconductor layer, wherein a shortest distance between two of the conductive vias is larger than a shortest distance between the first pad portion and the second pad portion.
    Type: Application
    Filed: December 29, 2023
    Publication date: April 25, 2024
    Inventors: Chao-Hsing CHEN, Jia-Kuen WANG, Tzu-Yao TSENG, Tsung-Hsun CHIANG, Bo-Jiun HU, Wen-Hung CHUANG, Yu-Ling LIN
  • Patent number: 11942509
    Abstract: A light-emitting device comprises a substrate; a first light-emitting unit and a second light-emitting unit formed on the substrate, each of the first light-emitting unit and the second light-emitting unit comprises a first semiconductor layer, a second semiconductor layer, and an active layer between the first semiconductor layer and the second semiconductor layer, wherein the first light-emitting unit comprises a first semiconductor mesa and a first surrounding part surrounding the first semiconductor mesa, and the second light-emitting unit comprises a second semiconductor mesa and a second surrounding part surrounding the second semiconductor mesa; a trench formed between the first light-emitting unit and the second light-emitting unit and exposing the substrate; a first insulating layer comprising a first opening on the first surrounding part and a second opening on the second semiconductor layer of the second light-emitting unit; and a connecting electrode comprising a first connecting part on the first
    Type: Grant
    Filed: June 15, 2021
    Date of Patent: March 26, 2024
    Assignee: EPISTAR CORPORATION
    Inventors: Chao-Hsing Chen, I-Lun Ma, Bo-Jiun Hu, Yu-Ling Lin, Chien-Chih Liao
  • Publication number: 20240066284
    Abstract: An antimicrobial electrochemical fabric and a method for manufacturing the same are provided. The method for manufacturing the antimicrobial electrochemical fabric includes the following steps: providing an electro-spinning polymer solution, in which the electro-spinning polymer solution includes a polymer and a plurality of antimicrobial metal precursors; electro-spinning the electro-spinning polymer solution into a polymer fiber for formation of a sheet structure, in which the plurality of antimicrobial metal precursors are distributed on the polymer fiber; and reducing the plurality of antimicrobial metal precursors into a plurality of antimicrobial metal particles, so as to form the sheet structure into the antimicrobial electrochemical fabric.
    Type: Application
    Filed: August 24, 2023
    Publication date: February 29, 2024
    Inventors: Chih-hsing Lin, YU-YU CHO, CHAO-LUN HSIAO
  • Patent number: 9012676
    Abstract: A preparation of aryl carbamates can be achieved readily by carbonylation of an aromatic polyamine compound with diphenyl carbonate (DPC) using a combination of an organic acid and a tertiary amine as a catalyst. Aryl carbamate can be converted into 4,4?-diphenylmethane diisocyanate (MDI) by heating it at about 200 to about 230° C. in a non-polar solvent containing inhibitor such as benzoyl chloride. In another application, trans-ureation of biscarbamates with an amine or mixed amines is found to be extremely facile in a polar solvent such as dimethyl sulfoxide (DMSO) and tetramethylene sulfone (TMS) in absence of any catalyst to make polyurea polymers of high molecular weights. Thus, efficient green-chemistry processes based on biscarbamates in making isocyanate products as well as urea prepolymers, urea elastomers and urea plastics have been developed in all in excellent yields without using reactive phosgene or 4,4?-diphenylmethane diisocyanate separately in the trans-ureation polymerizations.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: April 21, 2015
    Assignees: Great Eastern Resins Industrial Co., Ltd., National Chung Hsing University
    Inventors: Shenghong A. Dai, Hsueh-Yung Chen, Chao-Hsing Lin, Chun-Ying Huang, Wen-Chen Pan
  • Publication number: 20130079542
    Abstract: A preparation of aryl carbamates can be achieved readily by carbonylation of an aromatic polyamine compound with diphenyl carbonate (DPC) using a combination of an organic acid and a tertiary amine as a catalyst. Aryl carbamate can be converted into 4,4?-diphenylmethane diisocyanate (MDI) by heating it at about 200 to about 230° C. in a non-polar solvent containing inhibitor such as benzoyl chloride. In another application, trans-ureation of biscarbamates with an amine or mixed amines is found to be extremely facile in a polar solvent such as dimethyl sulfoxide (DMSO) and tetramethylene sulfone (TMS) in absence of any catalyst to make polyurea polymers of high molecular weights. Thus, efficient green-chemistry processes based on biscarbamates in making isocyanate products as well as urea prepolymers, urea elastomers and urea plastics have been developed in all in excellent yields without using reactive phosgene or 4,4?-diphenylmethane diisocyanate separately in the trans-ureation polymerizations.
    Type: Application
    Filed: September 22, 2011
    Publication date: March 28, 2013
    Applicants: National Chung Hsing University, Great Eastern Resins Industrial Co., Ltd.
    Inventors: Shenghong A. Dai, Xue-Yong Chen, Chao-Hsing Lin, Chun-Ying Huang, Wen-Chen Pan
  • Patent number: 8110710
    Abstract: This invention provides one-pot reaction for digesting polycarbonate waste with alkylene glycol in the presence of a basic catalyst at 180° C. under normal atmospheric pressure. The digested product mixture was found to consist of bisphenol A (BPA) and monoalkoxylated and bisalkoxylated diols of BPA. Alkoxylation of BPA and monoalkoxylated diols of BPA is performed by adding urea or urea derivative (or carbonic acid ester or amine ester) to the digested product mixture at a high temperature under normal atmospheric pressure to obtain the final product, i.e., bisalkoxylated diols of BPA in high yield. The bisalkoxylated diols of BPA may be used as raw materials to synthesize polymer such as polyurethane (PU) or polyester.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: February 7, 2012
    Assignee: National Chung-Hsing University
    Inventors: Shenghong A. Dai, Chao-Hsing Lin, Hsing-Yo Lin, Wei-Zhi Liao
  • Publication number: 20080255395
    Abstract: This invention provides one-pot reaction for digesting polycarbonate waste with alkylene glycol in the presence of a basic catalyst at 180° C. under normal atmospheric pressure. The digested product mixture was found to consist of bisphenol A (BPA) and monoalkoxylated and bisalkoxylated diols of BPA. Alkoxylation of BPA and monoalkoxylated diols of BPA is performed by adding urea or urea derivative (or carbonic acid ester or amine ester) to the digested product mixture at a high temperature under normal atmospheric pressure to obtain the final product, i.e., bisalkoxylated diols of BPA in high yield. The bisalkoxylated diols of BPA may be used as raw materials to synthesize polymer such as polyurethane (PU) or polyester.
    Type: Application
    Filed: October 30, 2007
    Publication date: October 16, 2008
    Inventors: Shenghong A. Dai, Chao-Hsing Lin, Hsing-yo Lin, Wei-Zhi Liao