Patents by Inventor Chao-Lung Chen
Chao-Lung Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250042757Abstract: Hydrofluoric acid waste streams from semiconductor device manufacturing processes are collected and converted to cryolite utilizing disclosed systems and processes. The systems and processes are able to utilize hydrofluoric acid waste streams from multiple different sources. The systems and processes utilizing control delivery of reactant so that the produced cyrolite has low impurity levels and meets industry standards.Type: ApplicationFiled: January 12, 2024Publication date: February 6, 2025Inventors: You-Shiun LIN, Chao-Chun CHANG, Kuo-Wei CHEN, Yi-Chen LI, Tsung Lung LU
-
Patent number: 12051659Abstract: Semiconductor devices are provided. The semiconductor device includes a substrate, an interconnect structure, and a conductive pad structure. The interconnect structure is over the substrate and includes a top metal layer. The conductive pad structure is over the interconnect structure and includes a lower barrier film, an upper barrier film, and an aluminum-containing layer. The lower barrier film is on the top metal layer. The upper barrier film is on the lower barrier film and has an amorphous structure. The aluminum-containing layer is on the upper barrier film. The lower barrier film and the upper barrier film are made of a same material, and a nitrogen atomic percentage of the upper barrier film is higher than a nitrogen atomic percentage of the lower barrier film.Type: GrantFiled: May 10, 2023Date of Patent: July 30, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Po-Hsun Huang, Po-Han Wang, Ing-Ju Lee, Chao-Lung Chen, Cheng-Ming Wu
-
Publication number: 20230275049Abstract: Semiconductor devices are provided. The semiconductor device includes a substrate, an interconnect structure, and a conductive pad structure. The interconnect structure is over the substrate and includes a top metal layer. The conductive pad structure is over the interconnect structure and includes a lower barrier film, an upper barrier film, and an aluminum-containing layer. The lower barrier film is on the top metal layer. The upper barrier film is on the lower barrier film and has an amorphous structure. The aluminum-containing layer is on the upper barrier film. The lower barrier film and the upper barrier film are made of a same material, and a nitrogen atomic percentage of the upper barrier film is higher than a nitrogen atomic percentage of the lower barrier film.Type: ApplicationFiled: May 10, 2023Publication date: August 31, 2023Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Po-Hsun HUANG, Po-Han WANG, Ing-Ju LEE, Chao-Lung CHEN, Cheng-Ming WU
-
Patent number: 11688703Abstract: Methods of fabricating semiconductor devices are provided. The method includes forming an interconnect structure over a substrate. The method also includes forming a passivation layer over the interconnect structure. The method further includes forming an opening in the passivation layer to expose a portion of the interconnect structure. In addition, the method includes sequentially forming a lower barrier film, an upper barrier film, and an aluminum-containing layer in the opening. The lower barrier film and the upper barrier film are made of metal nitride, and the upper barrier film has a nitrogen atomic percentage that is higher than a nitrogen atomic percentage of the lower barrier film and has an amorphous structure.Type: GrantFiled: April 13, 2022Date of Patent: June 27, 2023Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Po-Hsun Huang, Po-Han Wang, Ing-Ju Lee, Chao-Lung Chen, Cheng-Ming Wu
-
Publication number: 20220356594Abstract: A plating apparatus for electroplating a wafer includes a housing defining a plating chamber for housing a plating solution. A voltage source of the apparatus has a first terminal having a first polarity and a second terminal having a second polarity different than the first polarity. The first terminal is electrically coupled to the wafer. An anode is within the plating chamber, and the second terminal is electrically coupled to the anode. A membrane support is within the plating chamber and over the anode. The membrane support defines apertures, wherein in a first zone of the membrane support a first aperture-area to surface-area ratio is a first ratio, and in a second zone of the membrane support a second aperture-area to surface-area ratio is a second ratio, different than the first ratio.Type: ApplicationFiled: July 25, 2022Publication date: November 10, 2022Inventors: Che-Min LIN, Hung-San Lu, Chao-Lung Chen, Chao Yuan Chang, Chun-An Kung, Chin-Hsin Hsiao, Wen-Chun Hou, Szu-Hung Yang, Ping-Ching Jiang
-
Patent number: 11401624Abstract: A plating apparatus for electroplating a wafer includes a housing defining a plating chamber for housing a plating solution. A voltage source of the apparatus has a first terminal having a first polarity and a second terminal having a second polarity different than the first polarity. The first terminal is electrically coupled to the wafer. An anode is within the plating chamber, and the second terminal is electrically coupled to the anode. A membrane support is within the plating chamber and over the anode. The membrane support defines apertures, wherein in a first zone of the membrane support a first aperture-area to surface-area ratio is a first ratio, and in a second zone of the membrane support a second aperture-area to surface-area ratio is a second ratio, different than the first ratio.Type: GrantFiled: July 22, 2020Date of Patent: August 2, 2022Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITEDInventors: Che-Min Lin, Hung-San Lu, Chao-Lung Chen, Chao Yuan Chang, Chun-An Kung, Chin-Hsin Hsiao, Wen-Chun Hou, Szu-Hung Yang, Ping-Ching Jiang
-
Publication number: 20220238467Abstract: Methods of fabricating semiconductor devices are provided. The method includes forming an interconnect structure over a substrate. The method also includes forming a passivation layer over the interconnect structure. The method further includes forming an opening in the passivation layer to expose a portion of the interconnect structure. In addition, the method includes sequentially forming a lower barrier film, an upper barrier film, and an aluminum-containing layer in the opening. The lower barrier film and the upper barrier film are made of metal nitride, and the upper barrier film has a nitrogen atomic percentage that is higher than a nitrogen atomic percentage of the lower barrier film and has an amorphous structure.Type: ApplicationFiled: April 13, 2022Publication date: July 28, 2022Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Po-Hsun HUANG, Po-Han WANG, Ing-Ju LEE, Chao-Lung CHEN, Cheng-Ming WU
-
Patent number: 11309265Abstract: Methods of fabricating semiconductor devices are provided. The method includes providing a substrate and forming an interconnect structure on the substrate. The interconnect structure includes a top metal layer. The method also includes forming a first barrier film on the top metal layer using a first deposition process with a first level of power, and forming a second barrier film on the first barrier film using a second deposition process with a second level of power that is lower than the first level of power. The method further includes forming an aluminum-containing layer on the second barrier film. In addition, the method includes patterning the first barrier film, the second barrier film and the aluminum-containing layer to form a conductive pad structure.Type: GrantFiled: July 5, 2019Date of Patent: April 19, 2022Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Po-Hsun Huang, Po-Han Wang, Ing-Ju Lee, Chao-Lung Chen, Cheng-Ming Wu
-
Publication number: 20220025540Abstract: A plating apparatus for electroplating a wafer includes a housing defining a plating chamber for housing a plating solution. A voltage source of the apparatus has a first terminal having a first polarity and a second terminal having a second polarity different than the first polarity. The first terminal is electrically coupled to the wafer. An anode is within the plating chamber, and the second terminal is electrically coupled to the anode. A membrane support is within the plating chamber and over the anode. The membrane support defines apertures, wherein in a first zone of the membrane support a first aperture-area to surface-area ratio is a first ratio, and in a second zone of the membrane support a second aperture-area to surface-area ratio is a second ratio, different than the first ratio.Type: ApplicationFiled: July 22, 2020Publication date: January 27, 2022Inventors: Che-Min Lin, Hung-San Lu, Chao-Lung Chen, Chao Yuan Chang, Chun-An Kung, Chin-Hsin Hsiao, Wen-Chun Hou, Szu-Hung Yang, Ping-Ching Jiang
-
Publication number: 20200035628Abstract: Methods of fabricating semiconductor devices are provided. The method includes providing a substrate and forming an interconnect structure on the substrate. The interconnect structure includes a top metal layer. The method also includes forming a first barrier film on the top metal layer using a first deposition process with a first level of power, and forming a second barrier film on the first barrier film using a second deposition process with a second level of power that is lower than the first level of power. The method further includes forming an aluminum-containing layer on the second barrier film. In addition, the method includes patterning the first barrier film, the second barrier film and the aluminum-containing layer to form a conductive pad structure.Type: ApplicationFiled: July 5, 2019Publication date: January 30, 2020Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Po-Hsun HUANG, Po-Han WANG, Ing-Ju LEE, Chao-Lung CHEN, Cheng-Ming WU
-
Patent number: 7312149Abstract: A method of electroplating a metal layer on a semiconductor device includes a sequence of biasing operations that includes a first electroplating step at a first current density followed by a second immersion step at a second current density being less than the first current density, and subsequent electroplating steps of increasing current densities beginning with a third electroplating step having a third current density that is greater than the first current density. The second, low current density immersion step improves the quality of the plating process and produces a plated film that completely fills openings such as vias and trenches and avoids hollow vias and pull-back on the bottom corners of via and trench openings. The low current density second immersion step produces an electrochemical deposition process that provides low contact resistance and therefore reduces device failure.Type: GrantFiled: May 6, 2004Date of Patent: December 25, 2007Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Chao-Lung Chen, Kei-Wei Chen, Shih-Ho Lin, Ying-Lang Wang, Yu-Ku Lin, Ching-Hwanq Su, Po-Jen Shih, Shang-Chin Sung
-
Patent number: 7128821Abstract: An electropolishing method for removing potential device-contaminating particles from a wafer, is disclosed. The method includes immersing the wafer in an electropolishing electrolyte solution and removing defects and particles from the wafer by rotational friction between the wafer and the electrolyte solution in combination with electrolysis. The method is effective in removing particles from via openings of all sizes, including via openings having a width smaller than about 0.2 ?m.Type: GrantFiled: January 20, 2004Date of Patent: October 31, 2006Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Shih-Ho Lin, Chung-Chang Chen, Kei-Wei Chen, Shih-Tzung Chang, Chao-Lung Chen, Po-Jen Shih, Yu-Ku Lin, Ying-Lang Wang
-
Publication number: 20060237320Abstract: A method for forming a metal layer having a predetermined thickness on an underlying material is disclosed. According to the method, the underlying material is electroplated to form the metal layer having a fraction of the predetermined thickness thereon. The step of electroplating is interrupted for a predetermined period of time. The step of electroplating is then resumed to form the metal layer having the predetermined thickness on the underlying material, thereby improving planarity of the metal layer.Type: ApplicationFiled: April 25, 2005Publication date: October 26, 2006Inventors: K.Y. Lin, Chuan-Ping Hou, Keng-Hong Lin, Po-Jen Shih, S.K. Chen, Chao-Lung Chen, Chen Cheng Chou, Chyi Chern, De-Dui Liao
-
Publication number: 20050250327Abstract: A method of electroplating a metal layer on a semiconductor device includes a sequence of biasing operations that includes a first electroplating step at a first current density followed by a second immersion step at a second current density being less than the first current density, and subsequent electroplating steps of increasing current densities beginning with a third electroplating step having a third current density that is greater than the first current density. The second, low current density immersion step improves the quality of the plating process and produces a plated film that completely fills openings such as vias and trenches and avoids hollow vias and pull-back on the bottom corners of via and trench openings. The low current density second immersion step produces an electrochemical deposition process that provides low contact resistance and therefore reduces device failure.Type: ApplicationFiled: May 6, 2004Publication date: November 10, 2005Inventors: Chao-Lung Chen, Kei-Wei Chen, Shih-Ho Lin, Ying-Lang Wang, Yu-Ku Lin, Ching-Hwanq Su, Po-Jen Shih, Shang-Chin Sung
-
Publication number: 20050155869Abstract: An electropolishing method for removing potential device-contaminating particles from a wafer, is disclosed. The method includes immersing the wafer in an electropolishing electrolyte solution and removing defects and particles from the wafer by rotational friction between the wafer and the electrolyte solution in combination with electrolysis. The method is effective in removing particles from via openings of all sizes, including via openings having a width smaller than about 0.2 ?m.Type: ApplicationFiled: January 20, 2004Publication date: July 21, 2005Inventors: Shih-Ho Lin, Chung-Chang Chen, Kei-Wei Chen, Shih-Tzung Chang, Chao-Lung Chen, Po-Jen Shih, Yu-Ku Lin, Ying-Lang Wang